1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
// $Id: bblEMProprtional.cpp 962 2006-11-07 15:13:34Z privmane $
#include "bblEM.h"
#include "bblEMProportionalEB.h"
#include "likelihoodComputation.h"
using namespace likelihoodComputation;
#include "computeUpAlg.h"
#include "computeDownAlg.h"
#include "computeCounts.h"
#include "treeIt.h"
#include "fromCountTableComponentToDistance.h"
#include <ctime>//#define VERBOS
#include "fromCountTableComponentToDistancePropEB.h"
bblEMProportionalEB::bblEMProportionalEB(tree& et,
const vector<sequenceContainer>& sc,
multipleStochasticProcess* msp,
const gammaDistribution* pProportionDist,
const bool optimizeSelectedBranches,
const vector<Vdouble *> * weights,
const int maxIterations,
const MDOUBLE epsilon,
const MDOUBLE tollForPairwiseDist,
const MDOUBLE* likelihoodLast):
_et(et),_sc(sc),_msp(msp),_pProportionDist(pProportionDist),_weights (weights),_optimizeSelectedBranches(optimizeSelectedBranches) {
_numberOfGenes = _sc.size();
assert(_msp->getSPVecSize() == _sc.size());
_treeLikelihoodVec = compute_bblEMPropEB(maxIterations,epsilon,tollForPairwiseDist,likelihoodLast);
}
Vdouble bblEMProportionalEB::compute_bblEMPropEB(
const int maxIterations,
const MDOUBLE epsilon,
const MDOUBLE tollForPairwiseDist,
const MDOUBLE* likelihoodLast){
LOGnOUT(5,<<"Allocating place"<<endl);
allocatePlacePropEB();
LOGnOUT(5,<<"Done Allocating place"<<endl);
Vdouble oldLvec(_numberOfGenes,VERYSMALL);
Vdouble currLvec;
currLvec.resize(_numberOfGenes);
tree oldT = _et;
//doubleRep epsilonDR(epsilon);//DR
for (int i=0; i < maxIterations; ++i) {
LOGnOUT(5,<<"Calling computeUpPropEB on iteration "<<i<<endl);
computeUpPropEB();
for (int geneN=0; geneN < _numberOfGenes; ++geneN) {
currLvec[geneN] = likelihoodComputation::getTreeLikelihoodFromUp2(_et,_sc[geneN],*_msp->getSp(geneN),_cup[geneN],_pProportionDist,_posLike[geneN],(_weights?(*_weights)[geneN]:NULL));
}
LOGnOUT(5,<<"--- Iter="<<i<<" logL="<<sumVdouble(currLvec)<<endl);
if(sumVdouble(oldLvec)<=sumVdouble(currLvec)){ // make sure not to use tree with lower likelihood then last computed likelihood (before BBL-EM)
LOGnOUT(4,<<"Likelihood improved. oldL = "<<sumVdouble(oldLvec)<<" newL = "<<sumVdouble(currLvec)<<endl);
if(likelihoodLast){
if(*likelihoodLast<=sumVdouble(currLvec))
oldT = _et; // L didn't go down
else
LOGnOUT(4,<<"Likelihood went down compared pre-BBL oldL="<<*likelihoodLast<<" newL="<<sumVdouble(currLvec)<<" Do not update tree"<<endl);
}
else{
oldT = _et; // L didn't go down
LOGnOUT(7,<<"Tree Updated"<<endl);
}
}
else
LOGnOUT(4,<<"Likelihood did not improve. oldL="<<sumVdouble(oldLvec)<<" newL="<<sumVdouble(currLvec)<<" Do not update tree"<<endl);
if (sumVdouble(currLvec) < sumVdouble(oldLvec) + epsilon) { // need to break
if (sumVdouble(currLvec)<sumVdouble(oldLvec)) {
_et = oldT; //return to older tree
LOGnOUT(4,<<"Finished bblEMPropEB. Likelihood ="<<sumVdouble(oldLvec)<<endl);
return oldLvec; // keep the old tree, and old likelihood
} else {
//update the tree and likelihood and return
LOGnOUT(4,<<"Finished bblEMPropEB. Likelihood ="<<sumVdouble(currLvec)<<endl);
return currLvec;
}
}
bblEM_itPropEB(tollForPairwiseDist);
oldLvec = currLvec;
}
// in the case were we reached max_iter, we have to recompute the likelihood of the new tree...
computeUpPropEB();
for (int geneN=0; geneN < _numberOfGenes; ++geneN) {
currLvec[geneN] = likelihoodComputation::getTreeLikelihoodFromUp2(_et,_sc[geneN],*_msp->getSp(geneN),_cup[geneN],_pProportionDist,_posLike[geneN],(_weights?(*_weights)[geneN]:NULL));
}
if (sumVdouble(currLvec)<sumVdouble(oldLvec)) {
_et = oldT;
LOGnOUT(4,<<"Finished bblEMPropEB max iter. Likelihood ="<<sumVdouble(oldLvec)<<endl);
return oldLvec; // keep the old tree, and old likelihood
}
else{
LOGnOUT(4,<<"Finished bblEMPropEB max iter. Likelihood ="<<sumVdouble(currLvec)<<endl);
return currLvec;
}
}
void bblEMProportionalEB::allocatePlacePropEB() {
_computeCountsV.resize(_numberOfGenes);
_cup.resize(_numberOfGenes);
_cdown.resize(_numberOfGenes);
_pij.resize(_numberOfGenes);
_posLike.resize(_numberOfGenes);
for (int geneN=0; geneN < _numberOfGenes; ++geneN) {
_posLike[geneN].resize(_sc[geneN].seqLen());
for(int pos = 0;pos < _sc[geneN].seqLen();++pos){
_posLike[geneN][pos].resize(_pProportionDist->categories(),0.0);
}
stochasticProcess * sp = _msp->getSp(geneN);
_pij[geneN].resize(_pProportionDist->categories());
_computeCountsV[geneN].resize(_et.getNodesNum()); //initiateTablesOfCounts
for (int i=0; i < _computeCountsV[geneN].size(); ++i) {
_computeCountsV[geneN][i].countTableComponentAllocatePlace(sp->alphabetSize(),_pProportionDist->categories(),sp->categories());
}
_cup[geneN].allocatePlace(_sc[geneN].seqLen(),_pProportionDist->categories(),sp->categories(),_et.getNodesNum(), _sc[geneN].alphabetSize());
_cdown[geneN].allocatePlace(_pProportionDist->categories(),sp->categories(),_et.getNodesNum(), _sc[geneN].alphabetSize());
}
}
void bblEMProportionalEB::computeUpPropEB(){
for (int geneN=0; geneN < _numberOfGenes; ++geneN) {
for(int globalRateCategor = 0;globalRateCategor < _pProportionDist->categories();++globalRateCategor){
_msp->getSp(geneN)->setGlobalRate(_pProportionDist->rates(globalRateCategor));
_pij[geneN][globalRateCategor].fillPij(_et,*_msp->getSp(geneN),0); // 0 is becaues we compute Pij(t) and not its derivations...
computeUpAlg cupAlg;
for (int pos=0; pos < _sc[geneN].seqLen(); ++pos) {
for (int localRateCategor = 0; localRateCategor < _msp->getSp(geneN)->categories(); ++localRateCategor) {
cupAlg.fillComputeUp(_et,_sc[geneN],pos,_pij[geneN][globalRateCategor][localRateCategor],_cup[geneN][pos][globalRateCategor][localRateCategor]);
}
}
}
}
}
void bblEMProportionalEB::bblEM_itPropEB(const MDOUBLE tollForPairwiseDist){
for (int geneN=0; geneN < _numberOfGenes; ++geneN) {
for (int treeNode=0; treeNode < _computeCountsV[geneN].size(); ++treeNode) {
_computeCountsV[geneN][treeNode].zero();
}
for (int pos=0; pos < _sc[geneN].seqLen(); ++pos) {
computeDownPropEB(geneN,pos);
addCountsPropEB(geneN,pos); // computes the counts and adds to the table.
}
}
optimizeBranchesPropEB(tollForPairwiseDist);
}
void bblEMProportionalEB::computeDownPropEB(const int gene, const int pos){
computeDownAlg cdownAlg;
stochasticProcess * sp = _msp->getSp(gene);
for (int globalRateCategor = 0; globalRateCategor < _pProportionDist->categories(); ++globalRateCategor) {
for (int localRateCategor = 0; localRateCategor < sp->categories(); ++localRateCategor) {
//no need to set the global rate for each sp cause it was already performed in computeUpPropEB
cdownAlg.fillComputeDown(_et,_sc[gene],pos,_pij[gene][globalRateCategor][localRateCategor],_cdown[gene][globalRateCategor][localRateCategor],_cup[gene][pos][globalRateCategor][localRateCategor]);
}
}
}
void bblEMProportionalEB::addCountsPropEB(const int gene, const int pos){
vector<MDOUBLE> * weightsOfGene = (_weights?(*_weights)[gene]:NULL);
MDOUBLE weig = (weightsOfGene ? (*weightsOfGene)[pos] : 1.0);
if (weig == 0) return;
treeIterDownTopConst tIt(_et);
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if (!tIt->isRoot()) {
addCountsPropEB(gene,pos,mynode,_posLike[gene][pos],weig);
}
}
}
void bblEMProportionalEB::addCountsPropEB(const int gene,const int pos, tree::nodeP mynode, const VdoubleRep posProb, const MDOUBLE weig){
computeCounts cc;
stochasticProcess * sp = _msp->getSp(gene);
for (int globalRateCategor =0; globalRateCategor< _pProportionDist->categories(); ++globalRateCategor) {
for (int localRateCategor =0; localRateCategor < sp->categories(); ++localRateCategor) {
//cc.computeCountsNodeFatherNodeSonHomPosProportionalEB(_sc[gene],
// _pij[gene][globalRateCategor][localRateCategor],
// *sp,
// _cup[gene][pos][globalRateCategor][localRateCategor],
// _cdown[gene][globalRateCategor][localRateCategor],
// weig,
// posProb,
// mynode,
// _computeCountsV[gene][mynode->id()][globalRateCategor][localRateCategor],
// _pProportionDist->ratesProb(globalRateCategor)*sp->ratesProb(localRateCategor));
cc.computeCountsNodeFatherNodeSonHomPosProportionalEB(_sc[gene],
_pij[gene][globalRateCategor][localRateCategor],
*sp,
_cup[gene][pos][globalRateCategor][localRateCategor],
_cdown[gene][globalRateCategor][localRateCategor],
weig,
posProb,
mynode,
_computeCountsV[gene][mynode->id()][globalRateCategor][localRateCategor]);
}
}
}
/*
//tal's old implementation, where i think there's a bug cause he sends _computeCountsV[mynode->id()] to the
//fromCountTableComponentToDistanceProp constructor, but the first dimension of _computeCountsV is the genes and
//the tree nodes is only the second dimension
void bblEMProportionalEB::optimizeBranchesPropEB(const MDOUBLE tollForPairwiseDist){
treeIterDownTopConst tIt(_et);
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if (!tIt->isRoot()) {
fromCountTableComponentToDistanceProp from1(_computeCountsV[mynode->id()],_sp,tollForPairwiseDist,mynode->dis2father());
from1.computeDistance();
mynode->setDisToFather(from1.getDistance());
}
}
}
*/
void bblEMProportionalEB::optimizeBranchesPropEB(const MDOUBLE tollForPairwiseDist){
treeIterDownTopConst tIt(_et);
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if (!tIt->isRoot()) {
if((_optimizeSelectedBranches) && (tIt->getComment() != "1")) continue; //only selected branhes will be optimized
fromCountTableComponentToDistancePropEB from1(_computeCountsV,mynode->id(),_msp,_pProportionDist,tollForPairwiseDist,mynode->dis2father());
from1.computeDistance();
mynode->setDisToFather(from1.getDistance());
}
}
}
|