File: bestAlphaAndK.cpp

package info (click to toggle)
fastml 3.11-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,772 kB
  • sloc: cpp: 48,522; perl: 3,588; ansic: 819; makefile: 386; python: 83; sh: 55
file content (262 lines) | stat: -rw-r--r-- 10,658 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#include "bestAlphaAndK.h"
#include "computePijComponent.h"
#include "betaOmegaDistribution.h"
#include "codonUtils.h"


optimizeSelectonParameters::optimizeSelectonParameters(tree& et, //find Best params and best BBL
					   const sequenceContainer& sc,
					   vector<stochasticProcess>& spVec,
					   distribution * distr,
					   bool bblFlag,
					   bool isGamma, bool isBetaProbSet,bool isOmegaSet,
					   bool isKappaSet, bool isAlphaSet, bool isBetaSet,
					   const MDOUBLE upperBoundOnAlpha,
					   const MDOUBLE upperBoundOnBeta,
					   const MDOUBLE epsilonAlphaOptimization,
					   const MDOUBLE epsilonKOptimization,
					   const MDOUBLE epsilonLikelihoodImprovment,
					   const int maxBBLIterations,
					   const int maxTotalIterations){
   //initialization	
	MDOUBLE lowerValueOfParamK = 0;
	MDOUBLE lowerValueOfParamAlpha = 0.1;
	MDOUBLE lowerValueOfParamBeta = 0.1;
	MDOUBLE omegaLowerBoundary = 0.99; // this is to allow brent to reach the exact lower bound value
	MDOUBLE omegaUpperBoundary = 5.0; 
	MDOUBLE upperValueOfParamK = 5; // changed from 50, Adi S. 2/1/07 
	
	MDOUBLE initialGuessValueOfParamTr;
	initialGuessValueOfParamTr = _bestK = static_cast<wYangModel*>(spVec[0].getPijAccelerator()->getReplacementModel())->getK();

	MDOUBLE initialGuessValueOfParamAlpha;
	if (isGamma) initialGuessValueOfParamAlpha = _bestAlpha = static_cast<generalGammaDistribution*>(distr)->getAlpha();
	else initialGuessValueOfParamAlpha = _bestAlpha = static_cast<betaOmegaDistribution*>(distr)->getAlpha();
	
	MDOUBLE initialGuessValueOfParamBeta; 
	if (isGamma) initialGuessValueOfParamBeta = _bestBeta = static_cast<generalGammaDistribution*>(distr)->getBeta();
	else initialGuessValueOfParamBeta = _bestBeta = static_cast<betaOmegaDistribution*>(distr)->getBeta();

	MDOUBLE initialGuessValueOfParamOmega = -1;
	MDOUBLE initialGuessValueOfParamBetaProb = -1;
	if (!isGamma) {
		initialGuessValueOfParamOmega = _bestOmega = static_cast<betaOmegaDistribution*>(distr)->getOmega();
		initialGuessValueOfParamBetaProb = _bestBetaProb = static_cast<betaOmegaDistribution*>(distr)->getBetaProb();
	}
	_bestL = likelihoodComputation2Codon::getTreeLikelihoodAllPosAlphTheSame(et,sc,spVec,distr);;
	MDOUBLE newL = _bestL;

	MDOUBLE alphaFound = 0;
	MDOUBLE kFound = 0;
	MDOUBLE betaFound = 0;
	MDOUBLE omegaFound = 0;
	MDOUBLE betaProbFound = 0;
	bool changed = false;
	int i=0;
	LOG(5,<<endl<<"Beginning optimization of parameters"<<endl<<endl);

	for (i=0; i < maxTotalIterations; ++i) {
		LOG(5,<<"Iteration Number= " << i <<endl);
		LOG(5,<<"---------------------"<<endl);		
		cout<<"Iteration number = "<< i <<endl;
		alphaFound = omegaFound = betaProbFound = kFound = betaFound=0;
		changed = false;
//ALPHA (beta or gamma distribution parameter)
		if (!isAlphaSet){
			if (isGamma) initialGuessValueOfParamAlpha = static_cast<generalGammaDistribution*>(distr)->getAlpha();
			else initialGuessValueOfParamAlpha = static_cast<betaOmegaDistribution*>(distr)->getAlpha();
			newL = -brent(lowerValueOfParamAlpha,
						initialGuessValueOfParamAlpha,
						upperBoundOnAlpha,
						evalParam(et,sc,spVec,-1,distr,isGamma),epsilonAlphaOptimization,&alphaFound); 

			LOG(5,<<"current best L= "<<_bestL<<endl<<endl);
			LOG(5,<<"new L After alpha= " << newL<<endl);
			LOG(5,<<"new alpha = " <<alphaFound<<endl<<endl);

			
			if (newL > _bestL+epsilonLikelihoodImprovment ) {// update of likelihood ,v and model.
				_bestL = newL;
				_bestAlpha = alphaFound;
				if (isGamma) static_cast<generalGammaDistribution*>(distr)->setAlpha(alphaFound);
				else static_cast<betaOmegaDistribution*>(distr)->setAlpha(alphaFound);
				for (int categor = 0; categor < spVec.size();categor++)
					static_cast<wYangModel*>(spVec[categor].getPijAccelerator()->getReplacementModel())->setW(distr->rates(categor)); 
				normalizeMatrices(spVec,distr);
				changed = true;
			} 
		}
//BETA (beta distribution parameter)
		if (!isBetaSet) {
			if (isGamma) initialGuessValueOfParamBeta = static_cast<generalGammaDistribution*>(distr)->getBeta();
			else initialGuessValueOfParamBeta = static_cast<betaOmegaDistribution*>(distr)->getBeta();
			newL = -brent(lowerValueOfParamBeta,
						initialGuessValueOfParamBeta,
						upperBoundOnBeta,
						evalParam(et,sc,spVec,-2,distr,isGamma),epsilonAlphaOptimization,&betaFound); 

			LOG(5,<<"current best L= "<<_bestL<<endl<<endl);
			LOG(5,<<"new L After beta= " << newL<<endl);
			LOG(5,<<"new beta = " <<betaFound<<endl<<endl);
		
			if (newL > _bestL+epsilonLikelihoodImprovment ) {// update of likelihood ,v and model.
				_bestL = newL;
				_bestBeta = betaFound;
				if (isGamma) static_cast<generalGammaDistribution*>(distr)->setBeta(betaFound);
				else static_cast<betaOmegaDistribution*>(distr)->setBeta(betaFound);
				for (int categor = 0; categor < spVec.size();categor++)
					static_cast<wYangModel*>(spVec[categor].getPijAccelerator()->getReplacementModel())->setW(distr->rates(categor)); 		
				normalizeMatrices(spVec,distr);
				changed = true;
			}
		}
//K parameter
		if (!isKappaSet){
			initialGuessValueOfParamTr =  static_cast<wYangModel*>(spVec[0].getPijAccelerator()->getReplacementModel())->getK();
			newL = -brent(lowerValueOfParamK,   //optimaize Tr
					initialGuessValueOfParamTr,
					upperValueOfParamK,
					evalParam(et,sc,spVec,0,distr,isGamma),epsilonKOptimization,&kFound); 
			
			LOG(5,<<"current best L= "<<_bestL<<endl<<endl);
			LOG(5,<<"new L After kappa= " << newL<<endl);
			LOG(5,<<"new kappa = " <<kFound<<endl);

			if (newL > _bestL+epsilonLikelihoodImprovment ) {// update of likelihood and model.
				_bestL = newL;
				_bestK = kFound;
				for (int categor = 0; categor < spVec.size();categor++)
					static_cast<wYangModel*>(spVec[categor].getPijAccelerator()->getReplacementModel())->setK(kFound); 
				normalizeMatrices(spVec,distr);
				changed = true;
			}
		}
//beta distribution part (betaProb and additional omega)
		if (isGamma==false && !isBetaProbSet){ //optimize  beta probs
			if (!isOmegaSet){ // optimize omega  (M8 or M8b)
				MDOUBLE omegaFound;
				newL = -brent(omegaLowerBoundary, 
						initialGuessValueOfParamOmega,
						omegaUpperBoundary,
						evalParam(et,sc,spVec,1,distr,isGamma),0.01,&omegaFound); 

				LOG(5,<<"current best L= "<<_bestL<<endl<<endl);
				LOG(5,<<"new L After additional omega caetgory = " << newL<<endl);
				LOG(5,<<"new additional omega caetgory = " <<omegaFound<<endl<<endl);
	
				if (newL > _bestL+epsilonLikelihoodImprovment ) {
					_bestL = newL;
					_bestOmega = omegaFound;
					static_cast<betaOmegaDistribution*>(distr)->setOmega(omegaFound);
					static_cast<wYangModel*>(spVec[spVec.size()-1].getPijAccelerator()->getReplacementModel())->setW(omegaFound); 	
					normalizeMatrices(spVec,distr);
					changed = true;
				}
			}
			MDOUBLE betaProbFound;	
			newL = -brent(0.0,initialGuessValueOfParamBetaProb,1.0,
					evalParam(et,sc,spVec,2,distr,isGamma),0.01,&betaProbFound); 

			LOG(5,<<"current best L= "<<_bestL<<endl<<endl);
			LOG(5,<<"new L After prob(additional omega caetgory)= " << newL<<endl);
			LOG(5,<<"new prob(additional omega caetgory)= " <<1 - betaProbFound<<endl<<endl);
			if (newL > _bestL+epsilonLikelihoodImprovment ) {// update of likelihood ,v and model.
				_bestL = newL;
				_bestBetaProb = betaProbFound;
				static_cast<betaOmegaDistribution*>(distr)->setBetaProb(betaProbFound);
				normalizeMatrices(spVec,distr);
				changed = true;
			}
		}

//BBL
		if (bblFlag==true) {
//using epsilonAlphaOptimization as the epsilon for pairwise disatnce here		
			bblEM2codon bbl(et,sc,spVec,distr,NULL,maxBBLIterations,epsilonLikelihoodImprovment,epsilonAlphaOptimization);
			newL = bbl.getTreeLikelihood();
		
			LOG(5,<<"current best L= "<<_bestL<<endl<<endl);
			LOG(5,<<"new L After BL = " << newL<<endl);
			LOG(5,<<"Tree after this BBL iteration: "<<endl);
			LOGDO(5,et.output(myLog::LogFile()));
			
			if (newL > _bestL+epsilonLikelihoodImprovment) {
				_bestL = newL;
				changed = true;
			}
		}
	
		if (changed==false)
			break;
		
	}

	LOG(5,<<endl<<"Finished optimization of parameters"<<endl<<endl);

	if (i==maxTotalIterations) {
	  LOG(5,<<"Too many iterations in function optimizeCodonModelAndBBL. The last optimized parameters are used for the calculations."<<endl<<endl);
		
	}
	
}

evalParam::~evalParam(){
  if (_distr != NULL) delete _distr;
}


evalParam::evalParam(const evalParam &other): _et(other._et),_sc(other._sc),
_spVec(other._spVec), _alphaOrKs(other._alphaOrKs),_isGamma(other._isGamma)	
{
	_distr=other._distr->clone();
}


MDOUBLE evalParam::operator()(MDOUBLE param){

	if (_alphaOrKs==-1) updateAlpha(param);
	else if (_alphaOrKs==-2) updateBeta(param);
	else if (_alphaOrKs==0) updateK(param);
	else if (_alphaOrKs==1) updateOmega(param);
	else if (_alphaOrKs==2) updateBetaProb(param);
	MDOUBLE res = likelihoodComputation2Codon::getTreeLikelihoodAllPosAlphTheSame(_et,_sc,_spVec,_distr);
	return -res;	//return -log(likelihood).
}

void evalParam::updateBeta(MDOUBLE param){
	if (_isGamma) static_cast<generalGammaDistribution*>(_distr)->setBeta(param);
	else  static_cast<betaOmegaDistribution*>(_distr)->setBeta(param);
	for (int categor = 0; categor < _spVec.size();categor++){
		static_cast<wYangModel*>(_spVec[categor].getPijAccelerator()->getReplacementModel())->setW(_distr->rates(categor)); 
		
	}
	normalizeMatrices(_spVec,_distr);
}
void evalParam::updateAlpha(MDOUBLE param){
	if (_isGamma)static_cast<generalGammaDistribution*>(_distr)->setAlpha(param);
	else static_cast<betaOmegaDistribution*>(_distr)->setAlpha(param);
	for (int categor = 0; categor < _spVec.size();categor++){
		static_cast<wYangModel*>(_spVec[categor].getPijAccelerator()->getReplacementModel())->setW(_distr->rates(categor)); 
		
	}
	normalizeMatrices(_spVec,_distr);
}

void evalParam::updateK(MDOUBLE param){
	for (int categor = 0; categor < _spVec.size();categor++){
		static_cast<wYangModel*>(_spVec[categor].getPijAccelerator()->getReplacementModel())->setK(param); 
	}
	normalizeMatrices(_spVec,_distr);
}


void evalParam::updateOmega(MDOUBLE param){
	int size = _spVec.size();
	static_cast<wYangModel*>(_spVec[size-1].getPijAccelerator()->getReplacementModel())->setW(param); 
	normalizeMatrices(_spVec,_distr);
}

void evalParam::updateBetaProb(MDOUBLE param){
	static_cast<betaOmegaDistribution*>(_distr)->setBetaProb(param);
	normalizeMatrices(_spVec,_distr);
}