File: bestAlphaAndNu.cpp

package info (click to toggle)
fastml 3.11-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,772 kB
  • sloc: cpp: 48,522; perl: 3,588; ansic: 819; makefile: 386; python: 83; sh: 55
file content (177 lines) | stat: -rw-r--r-- 6,319 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// 	$Id: bestAlphaAndNu.cpp 1975 2007-04-22 13:47:28Z privmane $	
#include <iostream>
using namespace std;

#include "bestAlphaAndNu.h"

// ******************
// *     USSRV      *
// ******************

MDOUBLE bestFFixedTreeUSSRV::operator()(const tree& et, 
					   const sequenceContainer& sc,
					   const sequenceContainer& baseSc,
					   ussrvModel& model,
					   const Vdouble * weights,
					   const MDOUBLE upperBoundOnF,
					   const MDOUBLE epsilonFOptimization){
	
	MDOUBLE bestF=0;
	const MDOUBLE cx=upperBoundOnF;// left, middle, right limit on alpha
	const MDOUBLE bx=model.getF();
	const MDOUBLE ax=0.0;
	LOG(5,<<"****    Optimizing F    **** " << endl<< "bestFFixedTreeSSRV::operator() bx is :" << bx << endl);
	LOG(9,<<"ax is :" << ax << " cx is :" << cx << endl);
	_bestL = -brent(ax,bx,cx,
		C_evalFUSSRV(et,sc,baseSc,&model,weights),
		epsilonFOptimization,
		&bestF);
	setF(bestF,model);
	_bestF= bestF;
	return _bestL;
}

MDOUBLE bestAlphaFixedTreeUSSRV::operator()(const tree& et, //findBestAlphaFixedTree
					   const sequenceContainer& sc,
					   const sequenceContainer& baseSc,
					   ussrvModel& model,
					   const Vdouble * weights,
					   const MDOUBLE upperBoundOnAlpha,
					   const MDOUBLE epsilonAlphaOptimization){
	
	MDOUBLE bestA=0;
	const MDOUBLE cx=upperBoundOnAlpha;// left, middle, right limit on alpha
	const MDOUBLE bx=model.getAlpha();
	const MDOUBLE ax=0.0;
	LOG(5,<<"****    Optimizing Alpha    **** " << endl<< "bestAlphaFixedTreeSSRV::operator() bx is :" << bx << endl);
	_bestL = -brent(ax,bx,cx,
		C_evalAlphaUSSRV(et,sc,baseSc,&model,weights),
		epsilonAlphaOptimization,
		&bestA);
	setAlpha(bestA,model);
	_bestAlpha= bestA;
	return _bestL;
}

// Alpha is fixed
MDOUBLE bestNuFixedTreeUSSRV::operator()(const tree& et, 
					   const sequenceContainer& sc,
					   const sequenceContainer& baseSc,
					   ussrvModel& model,
					   const Vdouble * weights,
					   const MDOUBLE upperBoundOnNu,
					   const MDOUBLE epsilonNuOptimization){
		
	
	MDOUBLE bestN=0;
	// define the Nu bounds
	const MDOUBLE cx=upperBoundOnNu;// left, midle, right limit on alpha
	const MDOUBLE bx= model.getNu(); 
	const MDOUBLE ax=0.0;
	LOG(5,<<"****    Optimizing Nu    **** " << endl << "bestNuFixedTreeSSRV::operator() bx is : " << bx << endl);
	_bestL = -brent(ax,bx,cx, C_evalNuUSSRV(et,sc,baseSc,&model,weights), epsilonNuOptimization, &bestN);
	setNu(bestN,model);
	_bestNu= bestN;
	return _bestL;
}


// ******************
// *     SSRV       *
// ******************

MDOUBLE bestAlphaFixedTreeSSRV::operator()(const tree& et, //findBestAlphaFixedTree
	const sequenceContainer& sc, stochasticProcessSSRV& ssrvSp,	const Vdouble * weights,
	const MDOUBLE lowerBoundOnAlpha, const MDOUBLE upperBoundOnAlpha, const MDOUBLE epsilonAlphaOptimization){

	MDOUBLE bestA=0;
	const MDOUBLE cx=upperBoundOnAlpha;// left, midle, right limit on alpha
	replacementModelSSRV* pMulRM = static_cast<replacementModelSSRV*>(ssrvSp.getPijAccelerator()->getReplacementModel());
	gammaDistribution* gammaDist = static_cast<gammaDistribution*>(pMulRM->getDistribution()); 
	const MDOUBLE bx=gammaDist->getAlpha();
	const MDOUBLE ax=lowerBoundOnAlpha;
	LOG(5,<<"****    Optimizing Alpha    **** " << endl<< "bestAlphaFixedTreeSSRV::operator() bx is :" << bx << endl);
	_bestL = -brent(ax,bx,cx,
		C_evalAlphaSSRV(et,sc,ssrvSp,weights), epsilonAlphaOptimization, &bestA);
	
	setAlpha(bestA,ssrvSp);
	_bestAlpha= bestA;
	return _bestL;
}

// Alpha is fixed
MDOUBLE bestNuFixedTreeSSRV::operator()(const tree& et, const sequenceContainer& sc, 
	stochasticProcessSSRV& ssrvSp, const Vdouble * weights, const MDOUBLE lowerBoundOnNu, const MDOUBLE upperBoundOnNu,
	const MDOUBLE epsilonNuOptimization) {

	MDOUBLE bestN=0;
	// define the Nu bounds
	const MDOUBLE cx=upperBoundOnNu;// left, middle, right limit on alpha
	const MDOUBLE bx= static_cast<replacementModelSSRV*>(ssrvSp.getPijAccelerator()->getReplacementModel())->getRateOfRate();
	const MDOUBLE ax=lowerBoundOnNu;
	LOG(5,<<"****    Optimizing Nu    **** " << endl << "bestNuFixedTreeSSRV::operator() bx is : " << bx << endl);
	_bestL = -brent(ax,bx,cx, C_evalNuSSRV(et,sc,ssrvSp,weights), epsilonNuOptimization, &bestN);
	
	setNu(bestN,ssrvSp);
	_bestNu= bestN;
	return _bestL;
}


MDOUBLE bestTamura92ParamFixedTreeSSRV::operator()(const tree& et,
		const sequenceContainer& sc,
		stochasticProcessSSRV& ssrvSp,
		const Vdouble * weights/*= NULL */,
		const int maxTotalIterations /* = 5 */,
		const MDOUBLE epsilonLikelihoodImprovment /* = 0.05 */,
		const MDOUBLE lowerBoundOnTrTv /* = 0.0 */,
		const MDOUBLE upperBoundOnTrTv /* = 10.0 */,
		const MDOUBLE lowerBoundOnTheta /* = 0.0 */,
		const MDOUBLE upperBoundOnTheta /* = 1.0 */,
		const MDOUBLE epsilonTrTvOptimization /* = 0.01 */,
		const MDOUBLE epsilonThetaOptimization /* = 0.01 */){

	LOG(5,<<"Starting bestTamura92ParamFixedTreeSSRV::operator() :  find Best TrTv and theta"<<endl);
	MDOUBLE oldL = VERYSMALL;
	MDOUBLE newL = VERYSMALL;

	// first guess for the parameters
	MDOUBLE prevTrTv = static_cast<tamura92*>(static_cast<replacementModelSSRV*>(ssrvSp.getPijAccelerator()->getReplacementModel())->getBaseRM())->getTrTv();
	MDOUBLE prevTheta = static_cast<tamura92*>(static_cast<replacementModelSSRV*>(ssrvSp.getPijAccelerator()->getReplacementModel())->getBaseRM())->getTheta();

	for (int i=0; i < maxTotalIterations; ++i) {
		// optimize TrTv
		newL = -brent(lowerBoundOnTrTv, prevTrTv, upperBoundOnTrTv,
			C_evalTrTvSSRV(et,sc,ssrvSp,weights),
			epsilonTrTvOptimization,
			&_bestTrTv);
		setTrTv(_bestTrTv,ssrvSp);

		// optimize Theta
		newL = -brent(lowerBoundOnTheta, prevTheta, upperBoundOnTheta,
			C_evalThetaSSRV(et,sc,ssrvSp,weights),
			epsilonThetaOptimization,
			&_bestTheta);
		setTheta(_bestTheta,ssrvSp);

		// check for improvement in the likelihood
		if (newL > oldL+epsilonLikelihoodImprovment) {
			prevTrTv = _bestTrTv;
			prevTheta = _bestTheta;
			oldL = newL;
			_bestL = newL;
		} else {
			if (newL>oldL) {
				_bestL = newL;
			} else {
				LOG(5,<<"bestTamura92ParamFixedTreeSSRV::operator() likelihood went down!"<<endl<<"oldL = "<< oldL <<" newL= "<<newL<<endl);
				_bestL = oldL;
				_bestTrTv = prevTrTv;
				_bestTheta = prevTheta;
				setTrTvAndTheta(prevTrTv,prevTheta,ssrvSp);
			}
			break;
		}
	}
	return _bestL;
}