1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
// $Id: bestAlphaAndNu.cpp 1975 2007-04-22 13:47:28Z privmane $
#include <iostream>
using namespace std;
#include "bestAlphaAndNu.h"
// ******************
// * USSRV *
// ******************
MDOUBLE bestFFixedTreeUSSRV::operator()(const tree& et,
const sequenceContainer& sc,
const sequenceContainer& baseSc,
ussrvModel& model,
const Vdouble * weights,
const MDOUBLE upperBoundOnF,
const MDOUBLE epsilonFOptimization){
MDOUBLE bestF=0;
const MDOUBLE cx=upperBoundOnF;// left, middle, right limit on alpha
const MDOUBLE bx=model.getF();
const MDOUBLE ax=0.0;
LOG(5,<<"**** Optimizing F **** " << endl<< "bestFFixedTreeSSRV::operator() bx is :" << bx << endl);
LOG(9,<<"ax is :" << ax << " cx is :" << cx << endl);
_bestL = -brent(ax,bx,cx,
C_evalFUSSRV(et,sc,baseSc,&model,weights),
epsilonFOptimization,
&bestF);
setF(bestF,model);
_bestF= bestF;
return _bestL;
}
MDOUBLE bestAlphaFixedTreeUSSRV::operator()(const tree& et, //findBestAlphaFixedTree
const sequenceContainer& sc,
const sequenceContainer& baseSc,
ussrvModel& model,
const Vdouble * weights,
const MDOUBLE upperBoundOnAlpha,
const MDOUBLE epsilonAlphaOptimization){
MDOUBLE bestA=0;
const MDOUBLE cx=upperBoundOnAlpha;// left, middle, right limit on alpha
const MDOUBLE bx=model.getAlpha();
const MDOUBLE ax=0.0;
LOG(5,<<"**** Optimizing Alpha **** " << endl<< "bestAlphaFixedTreeSSRV::operator() bx is :" << bx << endl);
_bestL = -brent(ax,bx,cx,
C_evalAlphaUSSRV(et,sc,baseSc,&model,weights),
epsilonAlphaOptimization,
&bestA);
setAlpha(bestA,model);
_bestAlpha= bestA;
return _bestL;
}
// Alpha is fixed
MDOUBLE bestNuFixedTreeUSSRV::operator()(const tree& et,
const sequenceContainer& sc,
const sequenceContainer& baseSc,
ussrvModel& model,
const Vdouble * weights,
const MDOUBLE upperBoundOnNu,
const MDOUBLE epsilonNuOptimization){
MDOUBLE bestN=0;
// define the Nu bounds
const MDOUBLE cx=upperBoundOnNu;// left, midle, right limit on alpha
const MDOUBLE bx= model.getNu();
const MDOUBLE ax=0.0;
LOG(5,<<"**** Optimizing Nu **** " << endl << "bestNuFixedTreeSSRV::operator() bx is : " << bx << endl);
_bestL = -brent(ax,bx,cx, C_evalNuUSSRV(et,sc,baseSc,&model,weights), epsilonNuOptimization, &bestN);
setNu(bestN,model);
_bestNu= bestN;
return _bestL;
}
// ******************
// * SSRV *
// ******************
MDOUBLE bestAlphaFixedTreeSSRV::operator()(const tree& et, //findBestAlphaFixedTree
const sequenceContainer& sc, stochasticProcessSSRV& ssrvSp, const Vdouble * weights,
const MDOUBLE lowerBoundOnAlpha, const MDOUBLE upperBoundOnAlpha, const MDOUBLE epsilonAlphaOptimization){
MDOUBLE bestA=0;
const MDOUBLE cx=upperBoundOnAlpha;// left, midle, right limit on alpha
replacementModelSSRV* pMulRM = static_cast<replacementModelSSRV*>(ssrvSp.getPijAccelerator()->getReplacementModel());
gammaDistribution* gammaDist = static_cast<gammaDistribution*>(pMulRM->getDistribution());
const MDOUBLE bx=gammaDist->getAlpha();
const MDOUBLE ax=lowerBoundOnAlpha;
LOG(5,<<"**** Optimizing Alpha **** " << endl<< "bestAlphaFixedTreeSSRV::operator() bx is :" << bx << endl);
_bestL = -brent(ax,bx,cx,
C_evalAlphaSSRV(et,sc,ssrvSp,weights), epsilonAlphaOptimization, &bestA);
setAlpha(bestA,ssrvSp);
_bestAlpha= bestA;
return _bestL;
}
// Alpha is fixed
MDOUBLE bestNuFixedTreeSSRV::operator()(const tree& et, const sequenceContainer& sc,
stochasticProcessSSRV& ssrvSp, const Vdouble * weights, const MDOUBLE lowerBoundOnNu, const MDOUBLE upperBoundOnNu,
const MDOUBLE epsilonNuOptimization) {
MDOUBLE bestN=0;
// define the Nu bounds
const MDOUBLE cx=upperBoundOnNu;// left, middle, right limit on alpha
const MDOUBLE bx= static_cast<replacementModelSSRV*>(ssrvSp.getPijAccelerator()->getReplacementModel())->getRateOfRate();
const MDOUBLE ax=lowerBoundOnNu;
LOG(5,<<"**** Optimizing Nu **** " << endl << "bestNuFixedTreeSSRV::operator() bx is : " << bx << endl);
_bestL = -brent(ax,bx,cx, C_evalNuSSRV(et,sc,ssrvSp,weights), epsilonNuOptimization, &bestN);
setNu(bestN,ssrvSp);
_bestNu= bestN;
return _bestL;
}
MDOUBLE bestTamura92ParamFixedTreeSSRV::operator()(const tree& et,
const sequenceContainer& sc,
stochasticProcessSSRV& ssrvSp,
const Vdouble * weights/*= NULL */,
const int maxTotalIterations /* = 5 */,
const MDOUBLE epsilonLikelihoodImprovment /* = 0.05 */,
const MDOUBLE lowerBoundOnTrTv /* = 0.0 */,
const MDOUBLE upperBoundOnTrTv /* = 10.0 */,
const MDOUBLE lowerBoundOnTheta /* = 0.0 */,
const MDOUBLE upperBoundOnTheta /* = 1.0 */,
const MDOUBLE epsilonTrTvOptimization /* = 0.01 */,
const MDOUBLE epsilonThetaOptimization /* = 0.01 */){
LOG(5,<<"Starting bestTamura92ParamFixedTreeSSRV::operator() : find Best TrTv and theta"<<endl);
MDOUBLE oldL = VERYSMALL;
MDOUBLE newL = VERYSMALL;
// first guess for the parameters
MDOUBLE prevTrTv = static_cast<tamura92*>(static_cast<replacementModelSSRV*>(ssrvSp.getPijAccelerator()->getReplacementModel())->getBaseRM())->getTrTv();
MDOUBLE prevTheta = static_cast<tamura92*>(static_cast<replacementModelSSRV*>(ssrvSp.getPijAccelerator()->getReplacementModel())->getBaseRM())->getTheta();
for (int i=0; i < maxTotalIterations; ++i) {
// optimize TrTv
newL = -brent(lowerBoundOnTrTv, prevTrTv, upperBoundOnTrTv,
C_evalTrTvSSRV(et,sc,ssrvSp,weights),
epsilonTrTvOptimization,
&_bestTrTv);
setTrTv(_bestTrTv,ssrvSp);
// optimize Theta
newL = -brent(lowerBoundOnTheta, prevTheta, upperBoundOnTheta,
C_evalThetaSSRV(et,sc,ssrvSp,weights),
epsilonThetaOptimization,
&_bestTheta);
setTheta(_bestTheta,ssrvSp);
// check for improvement in the likelihood
if (newL > oldL+epsilonLikelihoodImprovment) {
prevTrTv = _bestTrTv;
prevTheta = _bestTheta;
oldL = newL;
_bestL = newL;
} else {
if (newL>oldL) {
_bestL = newL;
} else {
LOG(5,<<"bestTamura92ParamFixedTreeSSRV::operator() likelihood went down!"<<endl<<"oldL = "<< oldL <<" newL= "<<newL<<endl);
_bestL = oldL;
_bestTrTv = prevTrTv;
_bestTheta = prevTheta;
setTrTvAndTheta(prevTrTv,prevTheta,ssrvSp);
}
break;
}
}
return _bestL;
}
|