File: bestGtrModelParams.cpp

package info (click to toggle)
fastml 3.11-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,772 kB
  • sloc: cpp: 48,522; perl: 3,588; ansic: 819; makefile: 386; python: 83; sh: 55
file content (467 lines) | stat: -rw-r--r-- 18,871 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
// $Id: bestGtrModelparams.cpp 2008-29-04 10:57:00Z nimrod $

#include "bestGtrModelParams.h"
#include <iostream>
using namespace std;

#include "bblEM.h"
#include "bblEMProportionalEB.h"
#include "bblLSProportionalEB.h"
#include "numRec.h"
#include "logFile.h"
#include "bestAlpha.h"

bestGtrModel::bestGtrModel(tree& et, // find best Gtr Model Params
										const sequenceContainer& sc,
										stochasticProcess& sp,
										const Vdouble * weights,
										const int maxTotalIterations,
										const MDOUBLE epsilonLikelihoodImprovment,
										const MDOUBLE epsilonLoglikelihoodForGTRParam,
										const MDOUBLE upperBoundGTRParam,
										const bool optimizeTree,
										const bool optimizeAlpha){
	LOG(5,<<"Starting bestGtrModel: find Best replacement matrix parameters"<<endl);
	MDOUBLE oldL = VERYSMALL;
	MDOUBLE newL = VERYSMALL;
	_bestL = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(et,sc,sp,weights);

	MDOUBLE prev_a2c = (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->get_a2c();
	MDOUBLE prev_a2g = (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->get_a2g();
	MDOUBLE prev_a2t = (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->get_a2t();
	MDOUBLE prev_c2g = (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->get_c2g();
	MDOUBLE prev_c2t = (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->get_c2t();
	MDOUBLE prev_g2t = (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->get_g2t();

	MDOUBLE prevAlpha = epsilonLoglikeForBBL;

	for (int i=0; i < maxTotalIterations; ++i) {
		//optimize a2c
		newL = -brent(0.0, prev_a2c, upperBoundGTRParam,
					  C_evalGTRParam(a2c,et,sc,sp,weights),
					  epsilonLoglikelihoodForGTRParam,
					  &_best_a2c);
		if (newL >= _bestL) 
		{
			_bestL = newL;
			(static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_a2c(_best_a2c);//safety
		} 
		else
		{//likelihood went down!
            (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_a2c(prev_a2c);
			LOG(5,<<"likelihood went down in optimizing a2c"<<endl<<"oldL = "<<_bestL);
		}

		//optimize a2t
		newL = -brent(0.0, prev_a2t, upperBoundGTRParam,
					  C_evalGTRParam(a2t,et,sc,sp,weights),
					  epsilonLoglikelihoodForGTRParam,
					  &_best_a2t);
		if (newL >= _bestL) 
		{
			_bestL = newL;
			(static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_a2t(_best_a2t);//safety
		} 
		else
		{//likelihood went down!
            (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_a2t(prev_a2t);
			LOG(5,<<"likelihood went down in optimizing a2t"<<endl<<"oldL = "<<_bestL);
		}

		//optimize a2g
		newL = -brent(0.0, prev_a2g, upperBoundGTRParam,
					  C_evalGTRParam(a2g,et,sc,sp,weights),
					  epsilonLoglikelihoodForGTRParam,
					  &_best_a2g);
		if (newL >= _bestL) 
		{
			_bestL = newL;
			(static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_a2g(_best_a2g);//safety
		} 
		else
		{//likelihood went down!
            (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_a2g(prev_a2g);
			LOG(5,<<"likelihood went down in optimizing a2g"<<endl<<"oldL = "<<_bestL);
		}

		//optimize c2g
		newL = -brent(0.0, prev_c2g, upperBoundGTRParam,
					  C_evalGTRParam(c2g,et,sc,sp,weights),
					  epsilonLoglikelihoodForGTRParam,
					  &_best_c2g);
		if (newL >= _bestL) 
		{
			_bestL = newL;
			(static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_c2g(_best_c2g);//safety
		} 
		else
		{//likelihood went down!
            (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_c2g(prev_c2g);
			LOG(5,<<"likelihood went down in optimizing c2g"<<endl<<"oldL = "<<_bestL);
		}

		//optimize c2t
		newL = -brent(0.0, prev_c2t, upperBoundGTRParam,
					  C_evalGTRParam(c2t,et,sc,sp,weights),
					  epsilonLoglikelihoodForGTRParam,
					  &_best_c2t);
		if (newL >= _bestL) 
		{
			_bestL = newL;
			(static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_c2t(_best_c2t);//safety
		} 
		else
		{//likelihood went down!
            (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_c2t(prev_c2t);
			LOG(5,<<"likelihood went down in optimizing c2t"<<endl<<"oldL = "<<_bestL);
		}

		//optimize g2t
		newL = -brent(0.0, prev_g2t, upperBoundGTRParam,
					  C_evalGTRParam(g2t,et,sc,sp,weights),
					  epsilonLoglikelihoodForGTRParam,
					  &_best_g2t);
		if (newL >= _bestL) 
		{
			_bestL = newL;
			(static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_g2t(_best_g2t);//safety
		} 
		else
		{//likelihood went down!
            (static_cast<gtrModel*>(sp.getPijAccelerator()->getReplacementModel()))->set_g2t(prev_g2t);
			LOG(5,<<"likelihood went down in optimizing g2t"<<endl<<"oldL = "<<_bestL);
		}
		if(optimizeAlpha)
		{
			newL = -brent(0.0, prevAlpha, upperBoundForAlpha,
					  C_evalAlpha(et,sc,sp,weights),
					  epsilonLoglikeForAlphaOptimization,
					  &_bestAlpha);
			(static_cast<gammaDistribution*>(sp.distr()))->setAlpha(_bestAlpha); 

			if (newL >= _bestL) 
			{
				_bestL = newL;
				(static_cast<gammaDistribution*>(sp.distr()))->setAlpha(_bestAlpha); //safety
			} 
			else
			{//likelihood went down!
	            (static_cast<gammaDistribution*>(sp.distr()))->setAlpha(prevAlpha);
				LOG(5,<<"likelihood went down in optimizing alpha"<<endl<<"oldL = "<<_bestL);
			}
		}

		if(optimizeTree)
		{
			bblEM bblEM1(et,sc,sp,weights,maxBBLIt,epsilonLoglikeForBBL);
			_bestL = bblEM1.getTreeLikelihood();
		}


		// check for improvement in the likelihood
		if (_bestL > oldL+epsilonLikelihoodImprovment) {
			oldL = _bestL;
			prev_a2c = _best_a2c;
			prev_a2g = _best_a2g;
			prev_a2t = _best_a2t;
			prev_c2g = _best_c2g;
			prev_c2t = _best_c2t;
			prev_g2t = _best_g2t;
			prevAlpha = _bestAlpha;
		} else {
			break;
		}
	}
}

bestGtrModelProportional::bestGtrModelProportional(tree& et, // find best Gtr Model Params under a proportional model
										vector<sequenceContainer>& sc,
										multipleStochasticProcess* msp,
 										gammaDistribution* pProportionDist,
										Vdouble initLocalAlphas,
										Vdouble initLocala2cs,
										Vdouble initLocala2gs,
										Vdouble initLocala2ts,
										Vdouble initLocalc2gs,
										Vdouble initLocalc2ts,
										Vdouble initLocalg2ts,
										const MDOUBLE upperBoundOnLocalAlpha,
										const MDOUBLE initGlobalAlpha,
										const MDOUBLE upperBoundOnGlobalAlpha,
										const MDOUBLE upperBoundGTRParam,
										const int maxTotalIterations,
										const int maxBBLIterations,
										const bool optimizeSelectedBranches,
										const bool optimizeTree,
										const string branchLengthOptimizationMethod,
										const bool optimizeLocalParams,
										const bool optimizeGlobalAlpha,
										const Vdouble * weights,
										const MDOUBLE epsilonLikelihoodImprovment,
										const MDOUBLE epsilonLoglikelihoodForGTRParam,
										const MDOUBLE epsilonLoglikelihoodForLocalAlphaOptimization,
										const MDOUBLE epsilonLoglikelihoodForGlobalAlphaOptimization,
										const MDOUBLE epsilonLoglikelihoodForBBL){
	LOG(5,<<"Starting bestGtrModelProportional"<<endl);
	Vdouble current_a2cVec,current_a2gVec,current_a2tVec,current_c2gVec,current_c2tVec,current_g2tVec,currentLocalAlphaVec;
	MDOUBLE currentGlobalAlpha = initGlobalAlpha;
	currentLocalAlphaVec = initLocalAlphas;
	current_a2cVec = initLocala2cs;
	current_a2gVec = initLocala2gs;
	current_a2tVec = initLocala2ts;
	current_c2gVec = initLocalc2gs;
	current_c2tVec = initLocalc2ts;
	current_g2tVec = initLocalg2ts;

	Vdouble newLvec;
	//doubleRep epsilonLoglikelihoodForGlobalAlphaOptimizationDR(epsilonLoglikelihoodForGlobalAlphaOptimization);//DR
	newLvec.resize(msp->getSPVecSize());
	//doubleRep oldL(VERYSMALL);//DR
	//doubleRep newL;//DR
	MDOUBLE oldL = VERYSMALL;
	MDOUBLE newL;
	_bestLvec.resize(msp->getSPVecSize(),0.0);
	_bestLocalAlphaVec = initLocalAlphas;
	_bestGlobalAlpha = initGlobalAlpha;
	int spIndex;
	_best_a2cVec = current_a2cVec;
	_best_a2gVec = current_a2gVec;
	_best_a2tVec = current_a2tVec;
	_best_c2gVec = current_c2gVec;
	_best_c2tVec = current_c2tVec;
	_best_g2tVec = current_g2tVec;
	pProportionDist->setAlpha(_bestGlobalAlpha);
	for(spIndex = 0;spIndex < msp->getSPVecSize();++spIndex){
		(static_cast<gammaDistribution*>(msp->getSp(spIndex)->distr()))->setAlpha(_bestLocalAlphaVec[spIndex]);
		(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2c(_best_a2cVec[spIndex]);
		(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2g(_best_a2gVec[spIndex]);
		(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2t(_best_a2tVec[spIndex]);
		(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_c2g(_best_c2gVec[spIndex]);
		(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_c2t(_best_c2tVec[spIndex]);
		(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_g2t(_best_g2tVec[spIndex]);
	}
	//first compute the likelihood;
	_bestLvec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(et,sc,msp,pProportionDist,weights);

	MDOUBLE ax_local = 0.0;
	MDOUBLE c_GTRParam_x = upperBoundGTRParam;
	MDOUBLE c_localAlpha_x = upperBoundOnLocalAlpha;

	for (int i=0; i < maxTotalIterations; ++i) {
		if(optimizeLocalParams){
			for(spIndex = 0;spIndex < msp->getSPVecSize();++spIndex){
				//optimize a2c
				MDOUBLE a2c_x = _best_a2cVec[spIndex];
				newLvec[spIndex] = -brent(ax_local,a2c_x,c_GTRParam_x,
						  C_evalGTRParamProportional(a2c,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
						  epsilonLoglikelihoodForGTRParam,
						  &current_a2cVec[spIndex]);
				if (newLvec[spIndex] >= _bestLvec[spIndex]) 
				{
					_bestLvec[spIndex] = newLvec[spIndex];
					_best_a2cVec[spIndex] = current_a2cVec[spIndex];
				} 
				else
				{//likelihood went down!
					LOG(2,<<"likelihood went down in optimizing a2c"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
				}
				(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2c(_best_a2cVec[spIndex]);//safety
				
				//optimize a2t
				MDOUBLE a2t_x = _best_a2tVec[spIndex];
				newLvec[spIndex] = -brent(ax_local,a2t_x,c_GTRParam_x,
						  C_evalGTRParamProportional(a2t,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
						  epsilonLoglikelihoodForGTRParam,
						  &current_a2tVec[spIndex]);
				if (newLvec[spIndex] >= _bestLvec[spIndex]) 
				{
					_bestLvec[spIndex] = newLvec[spIndex];
					_best_a2tVec[spIndex] = current_a2tVec[spIndex];
				} 
				else
				{//likelihood went down!
					LOG(2,<<"likelihood went down in optimizing a2t"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
				}
				(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2t(_best_a2tVec[spIndex]);//safety

				//optimize a2g
				MDOUBLE a2g_x = _best_a2gVec[spIndex];
				newLvec[spIndex] = -brent(ax_local,a2g_x,c_GTRParam_x,
						  C_evalGTRParamProportional(a2g,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
						  epsilonLoglikelihoodForGTRParam,
						  &current_a2gVec[spIndex]);
				if (newLvec[spIndex] >= _bestLvec[spIndex]) 
				{
					_bestLvec[spIndex] = newLvec[spIndex];
					_best_a2gVec[spIndex] = current_a2gVec[spIndex];
				} 
				else
				{//likelihood went down!
					LOG(2,<<"likelihood went down in optimizing a2g"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
				}
				(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2g(_best_a2gVec[spIndex]);//safety

				//optimize c2g
				MDOUBLE c2g_x = _best_c2gVec[spIndex];
				newLvec[spIndex] = -brent(ax_local,c2g_x,c_GTRParam_x,
						  C_evalGTRParamProportional(c2g,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
						  epsilonLoglikelihoodForGTRParam,
						  &current_c2gVec[spIndex]);
				if (newLvec[spIndex] >= _bestLvec[spIndex]) 
				{
					_bestLvec[spIndex] = newLvec[spIndex];
					_best_c2gVec[spIndex] = current_c2gVec[spIndex];
				} 
				else
				{//likelihood went down!
					LOG(2,<<"likelihood went down in optimizing c2g"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
				}
				(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_c2g(_best_c2gVec[spIndex]);//safety

				//optimize c2t
				MDOUBLE c2t_x = _best_c2tVec[spIndex];
				newLvec[spIndex] = -brent(ax_local,c2t_x,c_GTRParam_x,
						  C_evalGTRParamProportional(c2t,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
						  epsilonLoglikelihoodForGTRParam,
						  &current_c2tVec[spIndex]);
				if (newLvec[spIndex] >= _bestLvec[spIndex]) 
				{
					_bestLvec[spIndex] = newLvec[spIndex];
					_best_c2tVec[spIndex] = current_c2tVec[spIndex];
				} 
				else
				{//likelihood went down!
					LOG(2,<<"likelihood went down in optimizing c2t"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
				}
				(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_c2t(_best_c2tVec[spIndex]);//safety

				//optimize g2t
				MDOUBLE g2t_x = _best_g2tVec[spIndex];
				newLvec[spIndex] = -brent(ax_local,g2t_x,c_GTRParam_x,
						  C_evalGTRParamProportional(g2t,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
						  epsilonLoglikelihoodForGTRParam,
						  &current_g2tVec[spIndex]);
				if (newLvec[spIndex] >= _bestLvec[spIndex]) 
				{
					_bestLvec[spIndex] = newLvec[spIndex];
					_best_g2tVec[spIndex] = current_g2tVec[spIndex];
				} 
				else
				{//likelihood went down!
					LOG(2,<<"likelihood went down in optimizing g2t"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
				}
				(static_cast<gtrModel*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_g2t(_best_g2tVec[spIndex]);//safety

				//optimize local alpha
				MDOUBLE localAlpha_x = _bestLocalAlphaVec[spIndex];
				newLvec[spIndex] = -brent(ax_local,localAlpha_x,c_localAlpha_x,
					  C_evalLocalAlpha(et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
					  epsilonLoglikelihoodForLocalAlphaOptimization,
					  &currentLocalAlphaVec[spIndex]);
				if (newLvec[spIndex] >= _bestLvec[spIndex]) 
				{
					_bestLvec[spIndex] = newLvec[spIndex];
					_bestLocalAlphaVec[spIndex] = currentLocalAlphaVec[spIndex];
				} 
				else
				{//likelihood went down!
					LOG(2,<<"likelihood went down in optimizing local alpha"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
				}
				(static_cast<gammaDistribution*>(msp->getSp(spIndex)->distr()))->setAlpha(_bestLocalAlphaVec[spIndex]); //safety
			}
			LOGnOUT(2,<<"Done with GTR local params optimization"<<endl<<"LL:"<<sumVdouble(_bestLvec)<<endl);
			LOGnOUT(2,<<"Local Params:"<<endl);
			LOGnOUT(2,<<"a2c:");
			for(spIndex = 0;spIndex < _best_a2cVec.size();++spIndex){
				LOGnOUT(2,<<_best_a2cVec[spIndex]<<",";);
			}
			LOGnOUT(2,<<endl);
			LOGnOUT(2,<<"a2g:");
			for(spIndex = 0;spIndex < _best_a2gVec.size();++spIndex){
				LOGnOUT(2,<<_best_a2gVec[spIndex]<<",";);
			}
			LOGnOUT(2,<<endl);
			LOGnOUT(2,<<"a2t:");
			for(spIndex = 0;spIndex < _best_a2tVec.size();++spIndex){
				LOGnOUT(2,<<_best_a2tVec[spIndex]<<",";);
			}
			LOGnOUT(2,<<endl);
			LOGnOUT(2,<<"c2g:");
			for(spIndex = 0;spIndex < _best_c2gVec.size();++spIndex){
				LOGnOUT(2,<<_best_c2gVec[spIndex]<<",";);
			}
			LOGnOUT(2,<<endl);
			LOGnOUT(2,<<"c2t:");
			for(spIndex = 0;spIndex < _best_c2tVec.size();++spIndex){
				LOGnOUT(2,<<_best_c2tVec[spIndex]<<",";);
			}
			LOGnOUT(2,<<endl);
			LOGnOUT(2,<<"g2t:");
			for(spIndex = 0;spIndex < _best_g2tVec.size();++spIndex){
				LOGnOUT(2,<<_best_g2tVec[spIndex]<<",";);
			}
			LOGnOUT(2,<<endl);
			LOGnOUT(2,<<"local alpha:");
			for(spIndex = 0;spIndex < _bestLocalAlphaVec.size();++spIndex){
				LOGnOUT(2,<<_bestLocalAlphaVec[spIndex]<<",";);
			}
			LOGnOUT(2,<<endl);
		}
		if(optimizeGlobalAlpha){
			//doubleRep ax_global(0.0);//DR
			//doubleRep c_globalAlpha_x(upperBoundOnGlobalAlpha);//DR
			//doubleRep minusOne(-1.0);//DR
			MDOUBLE ax_global = 0.0;
			MDOUBLE c_globalAlpha_x = upperBoundOnGlobalAlpha;

			//optimize global alpha
			//doubleRep globalAlpha_x(prevGlobalAlpha);//DR
			MDOUBLE globalAlpha_x = _bestGlobalAlpha;
			//newL = minusOne*brentDoubleRep(ax_global,globalAlpha_x,c_globalAlpha_x,
			//		C_evalGlobalAlpha(et,sc,msp,pProportionDist,weights),
			//		epsilonLoglikelihoodForGlobalAlphaOptimizationDR,
			//		&_bestGlobalAlpha);
			newL = -brent(ax_global,globalAlpha_x,c_globalAlpha_x,
					C_evalGlobalAlpha(et,sc,msp,pProportionDist,weights),
					epsilonLoglikelihoodForGlobalAlphaOptimization,
					&currentGlobalAlpha);
			if (newL >= sumVdouble(_bestLvec))
			{
				_bestGlobalAlpha = currentGlobalAlpha;
			} 
			else
			{//likelihood went down!
				LOG(2,<<"likelihood went down in optimizing global alpha"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
			}
			pProportionDist->setAlpha(_bestGlobalAlpha); //safety
			//whether or not likelihood has improved we need to update _bestLvec 
			_bestLvec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(et,sc,msp,pProportionDist,weights);
			LOGnOUT(2,<<"Done with global alpha optimization"<<endl<<"LL:"<<sumVdouble(_bestLvec)<<endl);
			LOGnOUT(2,<<"Global Alpha:"<<_bestGlobalAlpha<<endl);
		}

		if(optimizeTree)
		{
			if(branchLengthOptimizationMethod == "bblLS"){
				bblLSProportionalEB bblLSPEB1(et,sc,msp,pProportionDist,_bestLvec,optimizeSelectedBranches,maxBBLIterations,epsilonLoglikelihoodForBBL);
				_bestLvec = bblLSPEB1.getTreeLikelihoodVec();
				LOGnOUT(2,<<"Done with bblLS"<<endl<<"LL:"<<sumVdouble(_bestLvec)<<endl);
			}
			else if(branchLengthOptimizationMethod == "bblEM"){
				bblEMProportionalEB bblEMPEB1(et,sc,msp,pProportionDist,optimizeSelectedBranches,NULL,maxBBLIterations,epsilonLoglikelihoodForBBL);
				_bestLvec = bblEMPEB1.getTreeLikelihood();
				LOGnOUT(2,<<"Done with bblEM"<<endl<<"LL:"<<sumVdouble(_bestLvec)<<endl);
			}
			LOGnOUT(2,<<et.stringTreeInPhylipTreeFormat()<<endl);
		}
		// check for improvement in the likelihood
		if (sumVdouble(_bestLvec) > oldL+epsilonLikelihoodImprovment) {
			//all params have already been updated
			oldL = sumVdouble(_bestLvec);
		} else {
			break;
		}
		LOGnOUT(4,<<"Done with optimization iteration "<<i<<". LL: "<<sumVdouble(_bestLvec)<<endl);
	}
}