File: bestHKYparam.cpp

package info (click to toggle)
fastml 3.11-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,772 kB
  • sloc: cpp: 48,522; perl: 3,588; ansic: 819; makefile: 386; python: 83; sh: 55
file content (324 lines) | stat: -rw-r--r-- 12,169 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// $Id: bestHKYparam.cpp 10004 2011-11-13 04:40:13Z rubi $

#include "bestHKYparam.h"
#include <iostream>
using namespace std;

#include "bblEM.h"
#include "bblEMProportionalEB.h"
#include "bblLSProportionalEB.h"
#include "numRec.h"
#include "logFile.h"
#include "bestAlpha.h"

bestHkyParamFixedTree::bestHkyParamFixedTree(const tree& et, //findBestHkyParamFixedTree
					   const sequenceContainer& sc,
					   stochasticProcess& sp,
					   const Vdouble * weights,
					   const MDOUBLE upperBoundOnHkyParam,
					   const MDOUBLE epsilonHkyParamOptimization){
	LOG(5,<<"findBestHkyParamFixedTree"<<endl);
	MDOUBLE bestA=0;
	const MDOUBLE cx=upperBoundOnHkyParam;// left, midle, right limit on HkyParam
	const MDOUBLE bx=cx*0.3;
	const MDOUBLE ax=0;

	
	_bestL = -brent(ax,bx,cx,
		C_evalHkyParam(et,sc,sp,weights),
		epsilonHkyParamOptimization,
		&bestA);
	_bestHkyParam= bestA;
	(static_cast<hky*>(sp.getPijAccelerator()->getReplacementModel()))->changeTrTv(bestA);
}

bestHkyParamAndBBL::bestHkyParamAndBBL(tree& et, //find Best HkyParam and best BBL
					   const sequenceContainer& sc,
					   stochasticProcess& sp,
					   const Vdouble * weights,
					   const MDOUBLE upperBoundOnHkyParam,
					   const MDOUBLE epsilonHkyParamOptimization,
					   const MDOUBLE epsilonLikelihoodImprovment,
					   const int maxBBLIterations,
					   const int maxTotalIterations){
	LOG(5,<<"find Best HkyParam and best BBL"<<endl);
//	LOG(5,<<" 1. bestHkyParam::findBestHkyParam"<<endl);
//	brLenOpt br1(*et,*pi,weights);
	MDOUBLE oldL = VERYSMALL;
	_bestL = VERYSMALL;
	const MDOUBLE bx=upperBoundOnHkyParam*0.3;
	const MDOUBLE ax=0.01;
	const MDOUBLE cx=upperBoundOnHkyParam;
	MDOUBLE bestA=0;
	for (int i=0; i < maxTotalIterations; ++i) {
		_bestL = -brent(ax,bx,cx,
		C_evalHkyParam(et,sc,sp,weights),
		epsilonHkyParamOptimization,
		&bestA);

		if (_bestL > oldL+epsilonLikelihoodImprovment) {
			oldL = _bestL;
		} 
		else {//LL converged
			if (_bestL > oldL)
				(static_cast<hky*>(sp.getPijAccelerator()->getReplacementModel()))->changeTrTv(bestA);
			else
                _bestL = oldL;
            break;
		}
		_bestHkyParam = bestA;
		(static_cast<hky*>(sp.getPijAccelerator()->getReplacementModel()))->changeTrTv(bestA);
		LOG(5,<<"bestHkyParamAndBBL: trtv = "<<_bestHkyParam<<endl);
		bblEM bblEM1(et,sc,sp,NULL,maxBBLIterations,epsilonLikelihoodImprovment);//maxIterations=1000
		_bestL =bblEM1.getTreeLikelihood();
		if (_bestL > oldL+epsilonLikelihoodImprovment) {
			oldL = _bestL;
		}
		else {
			_bestL = oldL;
			break;
		}
	}
}

bestHkyParamAlphaAndBBL::bestHkyParamAlphaAndBBL( //find best TrTv (=HkyParam), Alpha and best branch lengths
	tree& et,
	const sequenceContainer& sc,
	stochasticProcess& sp,
	const Vdouble * weights,
	const int maxTotalIterations,
	const MDOUBLE epsilonLikelihoodImprovment,
	const MDOUBLE epsilonHkyParamOptimization,
	const MDOUBLE epsilonAlphaOptimization,
	const MDOUBLE epsilonBBL,
	const MDOUBLE upperBoundOnHkyParam,
	const int maxBBLIterations,
	const MDOUBLE initAlpha,
	const MDOUBLE upperBoundOnAlpha)

{
	MDOUBLE oldL = VERYSMALL;
	MDOUBLE newL = VERYSMALL;

	// first guess for the parameters
	MDOUBLE prevHkyParam = static_cast<hky*>(sp.getPijAccelerator()->getReplacementModel())->getTrTv();
	MDOUBLE prevAlpha = initAlpha;
	tree prevTree;

	for (int i=0; i < maxTotalIterations; ++i) {

		// optimize HkyParam
		newL = -brent(0.0, prevHkyParam, upperBoundOnHkyParam,
					  C_evalHkyParam(et,sc,sp,weights),
					  epsilonHkyParamOptimization,
					  &_bestHkyParam);
		(static_cast<hky*>(sp.getPijAccelerator()->getReplacementModel()))->changeTrTv(_bestHkyParam);
		LOG(5,<<"bestHkyParamAlphaAndBBL: trtv = "<<_bestHkyParam<<endl);
		// optimize Alpha
		newL = -brent(0.0, prevAlpha, upperBoundOnAlpha,
					  C_evalAlpha(et,sc,sp,weights),
					  epsilonAlphaOptimization,
					  &_bestAlpha);
		(static_cast<gammaDistribution*>(sp.distr()))->setAlpha(_bestAlpha);
		
		LOG(5,<<"# bestHkyParamAlphaAndBBL::bestHkyParamAlphaAndBBL iteration " << i << ": after param optimization:" <<endl
		      <<"# old L = " << oldL << "\t"
		      <<"# new L = " << newL << endl
			  <<"# new hkyParam = " << _bestHkyParam << endl
		      <<"# new Alpha = " << _bestAlpha << endl);

		// optimize branch lengths
		bblEM bblEM1(et,sc,sp,NULL,maxBBLIterations,epsilonBBL);
		newL =bblEM1.getTreeLikelihood();

		LOG(5,<<"# bestHkyParamAlphaAndBBL::bestHkyParamAlphaAndBBL iteration " << i << ": after branch lengths optimization:" <<endl 
		      <<"# After BBL new L = "<<newL<<" old L = "<<oldL<<endl
		      <<"# The tree:" );
		LOGDO(5,et.output(myLog::LogFile()));

		// check for improvement in the likelihood
		if (newL > oldL+epsilonLikelihoodImprovment) {
		    oldL = newL;
			_bestL = newL;
			prevHkyParam = _bestHkyParam;
			prevAlpha = _bestAlpha;
			prevTree = et;
		} else {
			if (newL>oldL) {
				_bestL = newL;
			} else {
				_bestL = oldL;
				_bestHkyParam = prevHkyParam;
				et = prevTree;
			}
		    break;
		}
	}
}

bestHkyParamAlphaAndBBLProportional::bestHkyParamAlphaAndBBLProportional( //find best TrTv (=HkyParam), global Alpha, local Alpha, and best branch lengths
	tree& et,
	vector<sequenceContainer>& sc,
	multipleStochasticProcess* msp,
	gammaDistribution* pProportionDist,
	Vdouble initLocalAlphas,
	Vdouble initLocalKappas,
	const MDOUBLE upperBoundOnLocalAlpha,
	const MDOUBLE initGlobalAlpha,
	const MDOUBLE upperBoundOnGlobalAlpha,
	const MDOUBLE upperBoundOnHkyParam,
	const int maxTotalIterations,
	const int maxBBLIterations,
	const bool optimizeSelectedBranches,
	const bool optimizeTree,
	const string branchLengthOptimizationMethod,
	const bool optimizeLocalParams,
	const bool optimizeGlobalAlpha,
	const Vdouble * weights,
	const MDOUBLE epsilonLikelihoodImprovment,
	const MDOUBLE epsilonHkyParamOptimization,
	const MDOUBLE epsilonLocalAlphaOptimization,
	const MDOUBLE epsilonGlobalAlphaOptimization,
	const MDOUBLE epsilonBBL)

{
	LOG(5,<<"Starting bestHkyParamAlphaAndBBLProportional"<<endl);
	Vdouble current_HkyParamVec,currentLocalAlphaVec;
	MDOUBLE currentGlobalAlpha = initGlobalAlpha;
	current_HkyParamVec = initLocalKappas;
	currentLocalAlphaVec = initLocalAlphas;
	//doubleRep epsilonGlobalAlphaOptimizationDR(epsilonGlobalAlphaOptimization);//DR
	Vdouble newLvec;
	newLvec.resize(msp->getSPVecSize());
	//doubleRep oldL(VERYSMALL);//DR
	//doubleRep newL;
	MDOUBLE oldL = VERYSMALL;
	MDOUBLE newL;
	_bestLvec.resize(msp->getSPVecSize(),0.0);
	_bestLocalAlphaVec = initLocalAlphas;
	_bestGlobalAlpha = initGlobalAlpha;
	int spIndex;
	//initial HKY params
	_bestHkyParamVec = initLocalKappas;
	pProportionDist->setAlpha(_bestGlobalAlpha);
	for(spIndex = 0;spIndex < msp->getSPVecSize();++spIndex){
		(static_cast<hky*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->changeTrTv(_bestHkyParamVec[spIndex]);
		(static_cast<gammaDistribution*>(msp->getSp(spIndex)->distr()))->setAlpha(_bestLocalAlphaVec[spIndex]);
	}
	//first compute the likelihood;
	_bestLvec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(et,sc,msp,pProportionDist,weights);	

	MDOUBLE ax_local = 0.0;
	MDOUBLE c_HKYParam_x = upperBoundOnHkyParam;
	MDOUBLE c_localAlpha_x = upperBoundOnLocalAlpha;
	for (int i=0; i < maxTotalIterations; ++i) {
		if(optimizeLocalParams){
			for(spIndex = 0;spIndex < msp->getSPVecSize();++spIndex){
				//optimize hky
				MDOUBLE hky_x(_bestHkyParamVec[spIndex]);
				newLvec[spIndex] = -brent(ax_local,hky_x,c_HKYParam_x,
					  C_evalLocalHkyParam(et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
					  epsilonHkyParamOptimization,
					  &current_HkyParamVec[spIndex]);
				if (newLvec[spIndex] >= _bestLvec[spIndex]) 
				{
					_bestLvec[spIndex] = newLvec[spIndex];
					_bestHkyParamVec[spIndex] = current_HkyParamVec[spIndex];
				} 
				else
				{//likelihood went down!
					LOG(2,<<"likelihood went down in optimizing hky param"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
				}
				(static_cast<hky*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->changeTrTv(_bestHkyParamVec[spIndex]);//safety

				//optimize local alpha
				MDOUBLE localAlpha_x(_bestLocalAlphaVec[spIndex]);
				newLvec[spIndex] = -brent(ax_local,localAlpha_x,c_localAlpha_x,
					  C_evalLocalAlpha(et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
					  epsilonLocalAlphaOptimization,
					  &currentLocalAlphaVec[spIndex]);
				if (newLvec[spIndex] >= _bestLvec[spIndex]) 
				{
					_bestLvec[spIndex] = newLvec[spIndex];
					_bestLocalAlphaVec[spIndex] = currentLocalAlphaVec[spIndex];
				} 
				else
				{//likelihood went down!
					LOG(2,<<"likelihood went down in optimizing local alpha"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
				}
				(static_cast<gammaDistribution*>(msp->getSp(spIndex)->distr()))->setAlpha(_bestLocalAlphaVec[spIndex]);
			}
			LOGnOUT(2,<<"Done with HKY local params optimization. LL: "<<sumVdouble(_bestLvec)<<endl);
			LOGnOUT(2,<<"Local Params:"<<endl);
			LOGnOUT(2,<<"HHY:");
			for(spIndex = 0;spIndex < _bestHkyParamVec.size();++spIndex){
				LOGnOUT(2,<<_bestHkyParamVec[spIndex]<<",";);
			}
			LOGnOUT(2,<<endl);
			LOGnOUT(2,<<"local alpha:");
			for(spIndex = 0;spIndex < _bestLocalAlphaVec.size();++spIndex){
				LOGnOUT(2,<<_bestLocalAlphaVec[spIndex]<<",";);
			}
			LOGnOUT(2,<<endl);
			_bestLvec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(et,sc,msp,pProportionDist,weights);
			LOGnOUT(2,<<"LL*: "<<sumVdouble(_bestLvec)<<endl);

		}
		if(optimizeGlobalAlpha){
			//doubleRep ax_global(0.0);//DR
			//doubleRep c_globalAlpha_x(upperBoundOnGlobalAlpha);//DR
			//doubleRep minusOne(-1.0);//DR
			MDOUBLE ax_global = 0.0;
			MDOUBLE c_globalAlpha_x = upperBoundOnGlobalAlpha;
			//optimize global alpha
			//doubleRep globalAlpha_x(prevGlobalAlpha);//DR
			MDOUBLE globalAlpha_x = _bestGlobalAlpha;
			//newL = minusOne*brentDoubleRep(ax_global,globalAlpha_x,c_globalAlpha_x,
			//		C_evalGlobalAlpha(et,sc,msp,pProportionDist,weights),
			//		epsilonGlobalAlphaOptimizationDR,
			//		&_bestGlobalAlpha);//DR
			newL = -brent(ax_global,globalAlpha_x,c_globalAlpha_x,
					C_evalGlobalAlpha(et,sc,msp,pProportionDist,weights),
					epsilonGlobalAlphaOptimization,
					&currentGlobalAlpha);
			if (newL >= sumVdouble(_bestLvec))
			{
				_bestGlobalAlpha = currentGlobalAlpha;
			} 
			else
			{//likelihood went down!
				LOG(2,<<"likelihood went down in optimizing global alpha"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
			}
            pProportionDist->setAlpha(_bestGlobalAlpha);
			//whether or not likelihood has improved we need to update _bestLvec 
			_bestLvec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(et,sc,msp,pProportionDist,weights);
			LOGnOUT(2,<<"Done with global alpha optimization"<<endl<<"LL:"<<sumVdouble(_bestLvec)<<endl);
			LOGnOUT(2,<<"Global Alpha:"<<_bestGlobalAlpha<<endl);
		}
		
		if(optimizeTree)
		{
			if(branchLengthOptimizationMethod == "bblLS"){
				bblLSProportionalEB bblLSPEB1(et,sc,msp,pProportionDist,_bestLvec,optimizeSelectedBranches,maxBBLIterations,epsilonBBL);
				_bestLvec = bblLSPEB1.getTreeLikelihoodVec();
				LOGnOUT(2,<<"Done with bblLS"<<endl<<"LL:"<<sumVdouble(_bestLvec)<<endl);
			}
			else if(branchLengthOptimizationMethod == "bblEM"){
				bblEMProportionalEB bblEMPEB1(et,sc,msp,pProportionDist,optimizeSelectedBranches,NULL,maxBBLIterations,epsilonBBL);
				_bestLvec = bblEMPEB1.getTreeLikelihood();
				LOGnOUT(2,<<"Done with bblEM"<<endl<<"LL:"<<sumVdouble(_bestLvec)<<endl);
			}
			LOGnOUT(2,<<et.stringTreeInPhylipTreeFormat()<<endl);
		}

		// check for improvement in the likelihood
		if (sumVdouble(_bestLvec) > oldL+epsilonLikelihoodImprovment) {
			//all params have already been updated
			oldL = sumVdouble(_bestLvec);
		} else {
			break;
		}
		LOGnOUT(4,<<"Done with optimization iteration "<<i<<". LL: "<<sumVdouble(_bestLvec)<<endl);
	}
}