1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
// $Id: bestParamUSSRV.cpp 4951 2008-09-24 11:16:58Z osnatz $
#include "bestParamUSSRV.h"
/* structure of this method:
(1) checks of the number of parameters to optimize, and decide how many parameters optimizations iteration,
and how many parameters+bbl iterations will be done.
(2) A loop over the parameters+bbl iterations
(2.1) A loop over the parameters optimization iterations
(2.1.1) Optimize alpha
(2.1.2) Optimize nu
(2.1.3) Optimize f
if the likelihood wasn't changed during this loop --> parameters converged --> break
(2.2) BBL
if the likelihood wasn't changed during this loop --> parameters+bbl converged --> break
(3) return likelihood
*/
// ***************
// * USSRV *
// ***************
MDOUBLE bestParamUSSRV::operator() (tree& et,
const sequenceContainer& sc,
const sequenceContainer& baseSc,
ussrvModel& model,
const Vdouble * weights /* =NULL */,
const MDOUBLE AlphaUpperBound /* = 15 */,
const MDOUBLE NuUpperBound /* = 15 */,
const MDOUBLE FUpperBound /* = 1 */,
const MDOUBLE epsilonParamOptimization /* = 0.01 */,
const MDOUBLE epsilonLikelihoodImprovment /* = 0.01 */,
const int maxIterations /* = 50 */,
const int maxOfParametersAndBblIterations /* = 40 */)
{
_bestL = VERYSMALL;
MDOUBLE newL = VERYSMALL;
bestAlphaFixedTreeUSSRV alphaOptimization;
bestNuFixedTreeUSSRV nuOptimization;
bestFFixedTreeUSSRV fOptimization;
int it, bblIt;
int numberOfIterations(maxIterations);
int numberOfParametersAndBblIterations(maxOfParametersAndBblIterations);
// if only one parameter is optimize (only Alpha or only Nu or only F) then we need only one iteration.
// if we only do bbl, without any optimization of the parameters, then we don't need iterations at all.
int countParameters2Optimize(0);
if (_AlphaOptimizationFlag) countParameters2Optimize++;
if (_NuOptimizationFlag) countParameters2Optimize++;
if (_FOptimizationFlag) countParameters2Optimize++;
if (countParameters2Optimize==0)
{
numberOfIterations=0;
numberOfParametersAndBblIterations=1;
}
else if (countParameters2Optimize==1)
numberOfIterations=1;
if (_bblOptimizationFlag == false)
numberOfParametersAndBblIterations = 1;
_bestAlpha = model.getAlpha();
_bestNu = model.getNu();
_bestF = model.getF();
bool changes(false);
bool bblChanges(false);
for (bblIt=0; bblIt < numberOfParametersAndBblIterations; ++bblIt)
{
LOG(8,<<"bestParamUSSRV, params+bbl, iteration: " << bblIt << endl);
bblChanges = false;
// parameters optimizations (without bbl)
// in each iteration : optimization of Alpha and then optimization of Nu, and then of F.
for (it=0; it < numberOfIterations; ++it)
{
changes = false;
// Alpha optimization
if (_AlphaOptimizationFlag)
{
LOGDO(5,printTime(myLog::LogFile()));
newL = alphaOptimization(et,sc,baseSc,model,weights,AlphaUpperBound,epsilonParamOptimization);
//the improvement in Likelihood is smaller than epsilon
if (newL < _bestL)
{
LOG(5,<<"likelihood went down in LS! (Alpha optimization)"<<endl<<"oldL = "<<_bestL<<" newL= "<<newL<<endl);
//go back to previous alpha
alphaOptimization.setAlpha(_bestAlpha,model);
alphaOptimization.setBestL(_bestL); // @@@@ maybe this is unnecessary
//break;
}
else
{// update of likelihood and model.
if (newL > _bestL+epsilonLikelihoodImprovment)
{
changes = true;
bblChanges = true;
}
LOG(9,<<"newL = " << newL << " _bestL = " << _bestL << " epsilonLikelihoodImprovment = " << epsilonLikelihoodImprovment << endl);
_bestL = newL;
_bestAlpha = alphaOptimization.getBestAlpha();
LOG(5,<<"new L = " << _bestL<<" new Alpha = " << _bestAlpha<<endl);
}
}
// Nu optimization
if (_NuOptimizationFlag)
{
LOGDO(5,printTime(myLog::LogFile()));
newL = nuOptimization(et,sc,baseSc,model,weights,NuUpperBound,epsilonParamOptimization);
//the improvement in Likelihood is smaller than epsilon
if (newL < _bestL)
{
LOG(5,<<"likelihood went down in LS! (Nu optimization)"<<endl<<"oldL = "<<_bestL<<" newL= "<<newL<<endl);
//go back to previous Nu
nuOptimization.setNu(_bestNu,model);
nuOptimization.setBestL(_bestL); // @@@@ maybe this is unnecessary
//break;
}
else
{// update of likelihood and model.
if (newL > _bestL+epsilonLikelihoodImprovment)
{
changes = true;
bblChanges = true;
}
LOG(9,<<"newL = " << newL << " _bestL = " << _bestL << " epsilonLikelihoodImprovment = " << epsilonLikelihoodImprovment << endl);
_bestL = newL;
_bestNu = nuOptimization.getBestNu();
LOG(5,<<"new L = " << _bestL<<" new Nu = " << _bestNu<<endl);
}
}
// F optimization
if (_FOptimizationFlag)
{
LOGDO(5,printTime(myLog::LogFile()));
newL = fOptimization(et,sc,baseSc,model,weights,FUpperBound,epsilonParamOptimization);
//the improvement in Likelihood is smaller than epsilon
if (newL < _bestL)
{
LOG(5,<<"likelihood went down in LS! (F optimization)"<<endl<<"oldL = "<<_bestL<<" newL= "<<newL<<endl);
//go back to previous F
fOptimization.setF(_bestF,model);
fOptimization.setBestL(_bestL); // @@@@ maybe this is unnecessary
//break;
}
else
{// update of likelihood and model.
if (newL > _bestL+epsilonLikelihoodImprovment )
{
changes = true;
bblChanges = true;
}
LOG(9,<<"newL = " << newL << " _bestL = " << _bestL << " epsilonLikelihoodImprovment = " << epsilonLikelihoodImprovment << endl);
_bestL = newL;
_bestF = fOptimization.getBestF();
LOG(5,<<"new L = " << _bestL<<" new F = " << _bestF<<endl);
}
}
if (changes == false)
{
LOG(5,<<"bestParamUSSRV parameters alpha,nu,f converged!"<<endl);
break;
}
}
if (changes == true)
LOG(5,<<"bestParamUSSRV parameters alpha, nu, f, did not converge after " << numberOfIterations << " iterations"<<endl);
// BBL
if (_bblOptimizationFlag == true)
{
LOGDO(5,printTime(myLog::LogFile()));
bblEM2USSRV bbl(et,sc,baseSc,model,weights,maxIterations);
newL = bbl.getTreeLikelihood();
LOG(5,<<"current best L= "<<_bestL<<endl);
LOG(5,<<"new L After BBL = " << newL<< " = "<< bbl.getTreeLikelihood() <<endl);
LOG(5,<<"The new tree is: " << endl);
if (5 <= myLog::LogLevel())
et.output(myLog::LogFile());
LOG(5,<<endl);
if (newL > _bestL+epsilonLikelihoodImprovment)
bblChanges = true;
if (newL < _bestL){
LOG(5,<<"likelihood went down in LS! (BBL)"<<endl<<"oldL = "<<_bestL);
LOG(5,<<" newL= "<<newL<<endl) ;
}
else
_bestL = newL;
}
if (bblChanges == false)
{
LOG(5,<<"bestParamUSSRV bbl and parameters converged!"<<endl);
break;
}
}
if (bblIt == numberOfParametersAndBblIterations)
LOG(5,<<"bestParamUSSRV bbl and parameters alpha did not converge after " << numberOfParametersAndBblIterations << "iterations"<<endl);
LOGDO(5,printTime(myLog::LogFile()));
return _bestL;
}
// ***************
// * SSRV *
// ***************
MDOUBLE bestParamSSRV::operator() (tree& et,
const sequenceContainer& sc,
stochasticProcessSSRV& ssrvSp,
const Vdouble * weights /* =NULL */,
const MDOUBLE AlphaUpperBound /* = 15 */,
const MDOUBLE NuUpperBound /* = 15 */,
const MDOUBLE TrTvUpperBound /* = 10 */,
const MDOUBLE epsilonParamOptimization /* = 0.01 */,
const MDOUBLE epsilonLikelihoodImprovment /* = 0.01 */,
const MDOUBLE epsilonBbl /*= 0.05 */,
const int maxIterations /* = 50 */,
const int maxOfParametersAndBblIterations /* = 40 */)
{
_bestL = VERYSMALL;
MDOUBLE newL = VERYSMALL;
bestAlphaFixedTreeSSRV alphaOptimization;
bestNuFixedTreeSSRV nuOptimization;
bestTamura92ParamFixedTreeSSRV tamura92Optimization;
int it, bblIt;
int numberOfIterations(maxIterations);
int numberOfParametersAndBblIterations(maxOfParametersAndBblIterations);
// if only one parameter is optimize (only Alpha or only Nu or only tamura92) then we need only one iteration.
// if we only do bbl, without any optimization of the parameters, then we don't need iterations at all.
int countParameters2Optimize(0);
if (_AlphaOptimizationFlag) countParameters2Optimize++;
if (_NuOptimizationFlag) countParameters2Optimize++;
if (_tamura92OptimizationFlag) countParameters2Optimize++;
if (countParameters2Optimize==0)
{
numberOfIterations=0;
numberOfParametersAndBblIterations=1;
}
else if (countParameters2Optimize==1)
numberOfIterations=1;
if (_bblOptimizationFlag == false)
numberOfParametersAndBblIterations = 1;
replacementModelSSRV* pMulRM = static_cast<replacementModelSSRV*>(ssrvSp.getPijAccelerator()->getReplacementModel());
gammaDistribution* gammaDist = static_cast<gammaDistribution*>(pMulRM->getDistribution());
_bestAlpha = gammaDist->getAlpha();
_bestNu = pMulRM->getRateOfRate();
bool changes(false);
bool bblChanges(false);
for (bblIt=0; bblIt < numberOfParametersAndBblIterations; ++bblIt)
{
bblChanges = false;
// Set initial values of lower/upper bounds for params
MDOUBLE AlphaLowerBoundCur = 0.0;
MDOUBLE AlphaUpperBoundCur = AlphaUpperBound;
MDOUBLE NuLowerBoundCur = 0.0;
MDOUBLE NuUpperBoundCur = NuUpperBound;
MDOUBLE TrTvLowerBoundCur = 0.0;
MDOUBLE TrTvUpperBoundCur = TrTvUpperBound;
MDOUBLE ThetaLowerBoundCur = 0.0;
MDOUBLE ThetaUpperBoundCur = 1.0;
// And for epsilon
MDOUBLE epsilonParamOptimizationCur = epsilonParamOptimization;
// parameters optimizations (without bbl)
// in each iteration : optimization of Alpha and then optimization of Nu, and then of F.
for (it=0; it < numberOfIterations; ++it)
{
LOG(8,<<"bestParamUSSRV, params+bbl, iteration: " << bblIt << endl);
changes = false;
// Alpha optimization
if (_AlphaOptimizationFlag)
{
LOGDO(5,printTime(myLog::LogFile()));
newL = alphaOptimization(et,sc,ssrvSp,weights,AlphaLowerBoundCur,AlphaUpperBoundCur,epsilonParamOptimizationCur);
//the improvement in Likelihood is smaller than epsilon
if (newL < _bestL)
{
LOG(5,<<"likelihood went down in LS! (Alpha optimization)"<<endl<<"oldL = "<<_bestL<<" newL= "<<newL<<endl);
//go back to previous alpha
alphaOptimization.setAlpha(_bestAlpha,ssrvSp);
alphaOptimization.setBestL(_bestL); // @@@@ maybe this is unnecessary
//break;
}
else
{// update of likelihood and model.
if (newL > _bestL+epsilonLikelihoodImprovment)
{
changes = true;
bblChanges = true;
}
LOG(9,<<"newL = " << newL << " _bestL = " << _bestL << " epsilonLikelihoodImprovment = " << epsilonLikelihoodImprovment << endl);
_bestL = newL;
_bestAlpha = alphaOptimization.getBestAlpha();
LOG(5,<<"new L = " << _bestL<<" new Alpha = " << _bestAlpha<<endl);
}
// Narrow search range between lower/upper bounds
AlphaLowerBoundCur = (AlphaLowerBoundCur + 2*_bestAlpha) / 3;
AlphaUpperBoundCur = (AlphaUpperBoundCur + 2*_bestAlpha) / 3;
}
// Nu optimization
if (_NuOptimizationFlag)
{
LOGDO(5,printTime(myLog::LogFile()));
newL = nuOptimization(et,sc,ssrvSp,weights,NuLowerBoundCur,NuUpperBoundCur,epsilonParamOptimizationCur);
//the improvement in Likelihood is smaller than epsilon
if (newL < _bestL)
{
LOG(5,<<"likelihood went down in LS! (Nu optimization)"<<endl<<"oldL = "<<_bestL<<" newL= "<<newL<<endl);
//go back to previous Nu
nuOptimization.setNu(_bestNu,ssrvSp);
nuOptimization.setBestL(_bestL); // @@@@ maybe this is unnecessary
//break;
}
else
{// update of likelihood and model.
if (newL > _bestL+epsilonLikelihoodImprovment)
{
changes = true;
bblChanges = true;
}
LOG(9,<<"newL = " << newL << " _bestL = " << _bestL << " epsilonLikelihoodImprovment = " << epsilonLikelihoodImprovment << endl);
_bestL = newL;
_bestNu = nuOptimization.getBestNu();
LOG(5,<<"new L = " << _bestL<<" new Nu = " << _bestNu<<endl);
}
// Narrow search range between lower/upper bounds
NuLowerBoundCur = (NuLowerBoundCur + 2*_bestNu) / 3;
NuUpperBoundCur = (NuUpperBoundCur + 2*_bestNu) / 3;
}
// tamura92 optimization
if (_tamura92OptimizationFlag)
{
LOGDO(5,printTime(myLog::LogFile()));
newL = tamura92Optimization(
et,sc,ssrvSp,weights,5,epsilonLikelihoodImprovment,
TrTvLowerBoundCur,TrTvUpperBoundCur,ThetaLowerBoundCur,ThetaUpperBoundCur,
epsilonParamOptimizationCur,epsilonParamOptimizationCur);
MDOUBLE bestTrTv = tamura92Optimization.getBestTrTv();
MDOUBLE bestTheta = tamura92Optimization.getBestTheta();
//the improvement in Likelihood is smaller than epsilon
if (newL < _bestL)
{
LOG(5,<<"likelihood went down in LS! (tamura92 optimization)"<<endl<<"oldL = "<<_bestL<<" newL= "<<newL<<endl);
}
else
{// update of likelihood and model.
if (newL > _bestL+epsilonLikelihoodImprovment)
{
changes = true;
bblChanges = true;
}
LOG(9,<<"newL = " << newL << " _bestL = " << _bestL << " epsilonLikelihoodImprovment = " << epsilonLikelihoodImprovment << endl);
_bestL = newL;
LOG(5,<<"new L = " << _bestL
<<" new TrTv = " << bestTrTv
<<" new Theta = " << bestTheta <<endl);
}
// Narrow search range between lower/upper bounds
TrTvLowerBoundCur = (TrTvLowerBoundCur + 2*bestTrTv) / 3;
TrTvUpperBoundCur = (TrTvUpperBoundCur + 2*bestTrTv) / 3;
ThetaLowerBoundCur = (ThetaLowerBoundCur + 2*bestTheta) / 3;
ThetaUpperBoundCur = (ThetaUpperBoundCur + 2*bestTheta) / 3;
}
if (changes == false)
{
LOG(5,<<"bestParamSSRV parameters alpha,nu, and tamura92 params converged!"<<endl);
break;
}
// Reduce epsilonParamOptimizationCur
epsilonParamOptimizationCur /= 2;
}
if (changes == true)
LOG(5,<<"bestParamSSRV parameters alpha, nu, and tamura92 params did not converge after " << numberOfIterations << " iterations"<<endl);
// BBL
if (_bblOptimizationFlag == true)
{
LOGDO(5,printTime(myLog::LogFile()));
bblEM bbl(et,sc,ssrvSp,weights,maxIterations,epsilonBbl);
newL = bbl.getTreeLikelihood();
LOG(5,<<" current best L= "<<_bestL<<endl);
LOG(5,<<"new L After BBL = " << newL<< " = "<< bbl.getTreeLikelihood() <<endl);
LOG(5,<<"The new tree is: " << endl);
if (5 <= myLog::LogLevel())
et.output(myLog::LogFile());
LOG(5,<<endl);
if (newL > _bestL+epsilonLikelihoodImprovment)
bblChanges = true;
if (newL < _bestL){
LOG(5,<<"likelihood went down in LS! (BBL)"<<endl<<"oldL = "<<_bestL);
LOG(5,<<" newL= "<<newL<<endl) ;
}
else
_bestL = newL;
}
if (bblChanges == false)
{
LOG(5,<<"bestParamSSRV bbl and parameters converged!"<<endl);
break;
}
}
if (bblIt == numberOfParametersAndBblIterations)
LOG(5,<<"bestParamSSRV bbl and parameters alpha did not converge after " << numberOfParametersAndBblIterations << "iterations"<<endl);
LOGDO(5,printTime(myLog::LogFile()));
return _bestL;
}
// Variant that can work on a const tree - only if we're not doing BBL
// WARNING: Running this with bblOptimization==true will give a fatal error
MDOUBLE bestParamSSRV::operator() (const tree& et,
const sequenceContainer& sc,
stochasticProcessSSRV& ssrvSp,
const Vdouble * weights /* =NULL */,
const MDOUBLE AlphaUpperBound /* = 15 */,
const MDOUBLE NuUpperBound /* = 15 */,
const MDOUBLE TrTvUpperBound /* = 10 */,
const MDOUBLE epsilonParamOptimization /* = 0.01 */,
const MDOUBLE epsilonLikelihoodImprovment /* = 0.01 */,
const MDOUBLE epsilonBbl /*= 0.05 */,
const int maxIterations /* = 50 */,
const int maxOfParametersAndBblIterations /* = 40 */)
{
if (_bblOptimizationFlag == true)
errorMsg::reportError("bestParamSSRV::operator(): Can't work on const tree if bblOptimization was requested");
tree etNotConst(et);
return operator()(etNotConst, sc, ssrvSp, weights,
AlphaUpperBound, NuUpperBound,
epsilonParamOptimization, epsilonLikelihoodImprovment,
epsilonBbl, maxIterations,
maxOfParametersAndBblIterations);
}
|