1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
// $Id: bestTamura92param.cpp 962 2006-11-07 15:13:34Z privmane $
#include "bestTamura92param.h"
#include <iostream>
using namespace std;
#include "bblEM.h"
#include "bblEMProportionalEB.h"
#include "bblLSProportionalEB.h"
#include "numRec.h"
#include "logFile.h"
#include "bestAlpha.h"
bestTamura92ParamFixedTree::bestTamura92ParamFixedTree(const tree& et, // find best TrTv and theta
const sequenceContainer& sc,
stochasticProcess& sp,
const Vdouble * weights,
const int maxTotalIterations,
const MDOUBLE epsilonLikelihoodImprovment,
const MDOUBLE epsilonLoglikelihoodForTrTvOptimization,
const MDOUBLE epsilonLoglikelihoodForThetaOptimization,
const MDOUBLE upperBoundOnTrTv) {
LOG(5,<<"Starting bestTamura92ParamFixedTree: find Best TrTv and theta"<<endl);
MDOUBLE oldL = VERYSMALL;
MDOUBLE newL = VERYSMALL;
// first guess for the parameters
MDOUBLE prevTrTv = upperBoundOnTrTv*0.3;
MDOUBLE prevTheta = 0.5;
for (int i=0; i < maxTotalIterations; ++i) {
// optimize TrTv
newL = -brent(0.0, prevTrTv, upperBoundOnTrTv,
C_evalTrTvParam(et,sc,sp,weights),
epsilonLoglikelihoodForTrTvOptimization,
&_bestTrTv);
// optimize Theta
newL = -brent(0.0, prevTheta, 1.0,
C_evalTheta(et,sc,sp,weights),
epsilonLoglikelihoodForThetaOptimization,
&_bestTheta);
// check for improvement in the likelihood
if (newL > oldL+epsilonLikelihoodImprovment) {
prevTrTv = _bestTrTv;
prevTheta = _bestTheta;
oldL = newL;
_bestL = newL;
} else {
if (newL>oldL) {
_bestL = newL;
} else {
_bestL = oldL;
_bestTrTv = prevTrTv;
_bestTheta = prevTheta;
}
break;
}
}
}
bestTamura92ParamAndBBL::bestTamura92ParamAndBBL(tree& et, //find best TrTv, theta and best BBL
const sequenceContainer& sc,
stochasticProcess& sp,
const Vdouble * weights,
const int maxTotalIterations,
const MDOUBLE epsilonLikelihoodImprovment,
const MDOUBLE epsilonLoglikelihoodForTrTvOptimization,
const MDOUBLE epsilonLoglikelihoodForThetaOptimization,
const MDOUBLE epsilonLoglikelihoodForBBL,
const MDOUBLE upperBoundOnTrTv,
const int maxBBLIterations){
LOG(5,<<"Starting bestTamura92ParamAndBBL: find best TrTv, theta and BBL"<<endl);
MDOUBLE oldL = VERYSMALL;
MDOUBLE newL = VERYSMALL;
// first guess for the parameters
MDOUBLE prevTrTv = upperBoundOnTrTv*0.3;
MDOUBLE prevTheta = 0.5;
tree prevTree;
for (int i=0; i < maxTotalIterations; ++i) {
// optimize TrTv
newL = -brent(0.0, prevTrTv, upperBoundOnTrTv,
C_evalTrTvParam(et,sc,sp,weights),
epsilonLoglikelihoodForTrTvOptimization,
&_bestTrTv);
(static_cast<tamura92*>(sp.getPijAccelerator()->getReplacementModel()))->changeTrTv(_bestTrTv);
// optimize Theta
newL = -brent(0.0, prevTheta, 1.0,
C_evalTheta(et,sc,sp,weights),
epsilonLoglikelihoodForThetaOptimization,
&_bestTheta);
(static_cast<tamura92*>(sp.getPijAccelerator()->getReplacementModel()))->changeTheta(_bestTheta);
// optimize branch lengths
bblEM bblEM1(et,sc,sp,NULL,maxBBLIterations,epsilonLoglikelihoodForBBL);//maxIterations=1000
newL =bblEM1.getTreeLikelihood();
// check for improvement in the likelihood
if (newL > oldL+epsilonLikelihoodImprovment) {
prevTrTv = _bestTrTv;
prevTheta = _bestTheta;
oldL = newL;
_bestL = newL;
prevTree = et;
} else {
if (newL>oldL) {
_bestL = newL;
} else {
_bestL = oldL;
_bestTrTv = prevTrTv;
_bestTheta = prevTheta;
et = prevTree;
}
break;
}
}
}
bestTamura92ParamAlphaAndBBL::bestTamura92ParamAlphaAndBBL( //find best TrTv, theta, Alpha and best branch lengths
tree& et,
const sequenceContainer& sc,
stochasticProcess& sp,
const Vdouble * weights,
const int maxTotalIterations,
const MDOUBLE epsilonLikelihoodImprovment,
const MDOUBLE epsilonLoglikelihoodForTrTvOptimization,
const MDOUBLE epsilonLoglikelihoodForThetaOptimization,
const MDOUBLE epsilonLoglikelihoodForAlphaOptimization,
const MDOUBLE epsilonLoglikelihoodForBBL,
const MDOUBLE upperBoundOnTrTv,
const int maxBBLIterations,
const MDOUBLE initAlpha,
const MDOUBLE upperBoundOnAlpha)
{
MDOUBLE oldL = VERYSMALL;
MDOUBLE newL = VERYSMALL;
// first guess for the parameters
MDOUBLE prevTrTv = static_cast<tamura92*>(sp.getPijAccelerator()->getReplacementModel())->getTrTv();
MDOUBLE prevTheta = static_cast<tamura92*>(sp.getPijAccelerator()->getReplacementModel())->getTheta();
MDOUBLE prevAlpha = initAlpha;
tree prevTree;
for (int i=0; i < maxTotalIterations; ++i) {
// optimize TrTv
newL = -brent(0.0, prevTrTv, upperBoundOnTrTv,
C_evalTrTvParam(et,sc,sp,weights),
epsilonLoglikelihoodForTrTvOptimization,
&_bestTrTv);
(static_cast<tamura92*>(sp.getPijAccelerator()->getReplacementModel()))->changeTrTv(_bestTrTv);
// optimize Theta
newL = -brent(0.0, prevTheta, 1.0,
C_evalTheta(et,sc,sp,weights),
epsilonLoglikelihoodForThetaOptimization,
&_bestTheta);
(static_cast<tamura92*>(sp.getPijAccelerator()->getReplacementModel()))->changeTheta(_bestTheta);
// optimize Alpha
newL = -brent(0.0, prevAlpha, upperBoundOnAlpha,
C_evalAlpha(et,sc,sp,weights),
epsilonLoglikelihoodForAlphaOptimization,
&_bestAlpha);
(static_cast<gammaDistribution*>(sp.distr()))->setAlpha(_bestAlpha);
LOG(5,<<"# bestTamura92ParamAlphaAndBBL::bestTamura92ParamAlphaAndBBL iteration " << i << ": after param optimization:" <<endl
<<"# old L = " << oldL << "\t"
<<"# new L = " << newL << endl
<<"# new Alpha = " << _bestAlpha << endl);
// optimize branch lengths
bblEM bblEM1(et,sc,sp,NULL,maxBBLIterations,epsilonLoglikelihoodForBBL);//maxIterations=1000
newL =bblEM1.getTreeLikelihood();
LOG(5,<<"# bestTamura92ParamAlphaAndBBL::bestTamura92ParamAlphaAndBBL iteration " << i << ": after branch lengths optimization:" <<endl
<<"# After BBL new L = "<<newL<<" old L = "<<oldL<<endl
<<"# The tree:" );
LOGDO(5,et.output(myLog::LogFile()));
// check for improvement in the likelihood
if (newL > oldL+epsilonLikelihoodImprovment) {
oldL = newL;
_bestL = newL;
prevTrTv = _bestTrTv;
prevTheta = _bestTheta;
prevAlpha = _bestAlpha;
prevTree = et;
} else {
if (newL>oldL) {
_bestL = newL;
} else {
_bestL = oldL;
_bestTrTv = prevTrTv;
_bestTheta = prevTheta;
et = prevTree;
}
break;
}
}
}
bestTamura92ParamAlphaAndBBLProportional::bestTamura92ParamAlphaAndBBLProportional( //find best TrTv, theta, loca Alpha for each gene, global Alpha and best branch lengths
tree& et,
vector<sequenceContainer>& sc,
multipleStochasticProcess* msp,
gammaDistribution* pProportionDist,
Vdouble initLocalAlphas,
Vdouble initLocalKappas,
Vdouble initLocalThetas,
const MDOUBLE upperBoundOnLocalAlpha,
const MDOUBLE initGlobalAlpha,
const MDOUBLE upperBoundOnGlobalAlpha,
const MDOUBLE upperBoundOnTrTv,
const int maxTotalIterations,
const int maxBBLIterations,
const bool optimizeSelectedBranches,
const bool optimizeTree,
const string branchLengthOptimizationMethod,
const bool optimizeLocalParams,
const bool optimizeGlobalAlpha,
const Vdouble * weights,
const MDOUBLE epsilonLikelihoodImprovment,
const MDOUBLE epsilonLoglikelihoodForLocalTrTvOptimization,
const MDOUBLE epsilonLoglikelihoodForLocalThetaOptimization,
const MDOUBLE epsilonLoglikelihoodForLocalAlphaOptimization,
const MDOUBLE epsilonLoglikelihoodForGlobalAlphaOptimization,
const MDOUBLE epsilonLoglikelihoodForBBL)
{
LOG(5,<<"Starting bestTamura92ParamAlphaAndBBLProportional"<<endl);
Vdouble currentTrTvVec,currentThetaVec,currentLocalAlphaVec;
MDOUBLE currentGlobalAlpha = initGlobalAlpha;
currentTrTvVec = initLocalKappas;
currentThetaVec = initLocalThetas;
currentLocalAlphaVec = initLocalAlphas;
Vdouble newLvec;
newLvec.resize(msp->getSPVecSize());
//doubleRep oldL(VERYSMALL);//DR
//doubleRep newL;//DR
MDOUBLE oldL = VERYSMALL;
MDOUBLE newL;
//doubleRep epsilonLoglikelihoodForGlobalAlphaOptimizationDR(epsilonLoglikelihoodForGlobalAlphaOptimization);//DR
_bestLvec.resize(msp->getSPVecSize(),0.0);
_bestLocalAlphaVec = initLocalAlphas;
_bestGlobalAlpha = initGlobalAlpha;
int spIndex;
_bestTrTvVec = currentTrTvVec;
_bestThetaVec = currentThetaVec;
pProportionDist->setAlpha(_bestGlobalAlpha);
for(spIndex = 0;spIndex < msp->getSPVecSize();++spIndex){
(static_cast<tamura92*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->changeTheta(_bestThetaVec[spIndex]);//safety
(static_cast<tamura92*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->changeTrTv(_bestTrTvVec[spIndex]);
(static_cast<gammaDistribution*>(msp->getSp(spIndex)->distr()))->setAlpha(_bestLocalAlphaVec[spIndex]);
}
//first compute the likelihood;
_bestLvec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(et,sc,msp,pProportionDist,weights);
MDOUBLE ax_local = 0.0;
MDOUBLE c_TrTv_x = upperBoundOnTrTv;
MDOUBLE c_theta_x = 1.0;
MDOUBLE c_localAlpha_x = upperBoundOnLocalAlpha;
for (int i=0; i < maxTotalIterations; ++i) {
if(optimizeLocalParams){
for(spIndex = 0;spIndex < msp->getSPVecSize();++spIndex){
//optimize Theta
MDOUBLE theta_x(_bestThetaVec[spIndex]);
newLvec[spIndex] = -brent(ax_local,theta_x,c_theta_x,
C_evalLocalTheta(et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
epsilonLoglikelihoodForLocalThetaOptimization,
¤tThetaVec[spIndex]);
if (newLvec[spIndex] >= _bestLvec[spIndex])
{
_bestLvec[spIndex] = newLvec[spIndex];
_bestThetaVec[spIndex] = currentThetaVec[spIndex];
}
else
{//likelihood went down!
LOG(2,<<"likelihood went down in optimizing TrTv param"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
}
(static_cast<tamura92*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->changeTheta(_bestThetaVec[spIndex]);//safety
//optimize TrTv
MDOUBLE TrTv_x(_bestTrTvVec[spIndex]);
newLvec[spIndex] = -brent(ax_local,TrTv_x,c_TrTv_x,
C_evalLocalTrTvParam(et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
epsilonLoglikelihoodForLocalTrTvOptimization,
¤tTrTvVec[spIndex]);
if (newLvec[spIndex] >= _bestLvec[spIndex])
{
_bestLvec[spIndex] = newLvec[spIndex];
_bestTrTvVec[spIndex] = currentTrTvVec[spIndex];
}
else
{//likelihood went down!
LOG(2,<<"likelihood went down in optimizing TrTv param"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
}
(static_cast<tamura92*>(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->changeTrTv(_bestTrTvVec[spIndex]);//safety
//optimize local alpha
MDOUBLE localAlpha_x(_bestLocalAlphaVec[spIndex]);
newLvec[spIndex] = -brent(ax_local,localAlpha_x, c_localAlpha_x,
C_evalLocalAlpha(et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights),
epsilonLoglikelihoodForLocalAlphaOptimization,
¤tLocalAlphaVec[spIndex]);
if (newLvec[spIndex] >= _bestLvec[spIndex])
{
_bestLvec[spIndex] = newLvec[spIndex];
_bestLocalAlphaVec[spIndex] = currentLocalAlphaVec[spIndex];
}
else
{//likelihood went down!
LOG(2,<<"likelihood went down in optimizing local alpha"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
}
(static_cast<gammaDistribution*>(msp->getSp(spIndex)->distr()))->setAlpha(_bestLocalAlphaVec[spIndex]); //safety
}
LOGnOUT(2,<<"Done with Tamura92 local params optimization. LL: "<<sumVdouble(_bestLvec)<<endl);
LOGnOUT(2,<<"Local Params:"<<endl);
LOGnOUT(2,<<"TrTv:");
for(spIndex = 0;spIndex < _bestTrTvVec.size();++spIndex){
LOGnOUT(2,<<_bestTrTvVec[spIndex]<<",";);
}
LOGnOUT(2,<<endl);
LOGnOUT(2,<<"Theta:");
for(spIndex = 0;spIndex < _bestThetaVec.size();++spIndex){
LOGnOUT(2,<<_bestThetaVec[spIndex]<<",";);
}
LOGnOUT(2,<<endl);
LOGnOUT(2,<<"local alpha:");
for(spIndex = 0;spIndex < _bestLocalAlphaVec.size();++spIndex){
LOGnOUT(2,<<_bestLocalAlphaVec[spIndex]<<",";);
}
LOGnOUT(2,<<endl);
}
if(optimizeGlobalAlpha){
//doubleRep ax_global(0.0);//DR
//doubleRep c_globalAlpha_x(upperBoundOnGlobalAlpha);//DR
//doubleRep minusOne(-1.0);//DR
MDOUBLE ax_global = 0.0;
MDOUBLE c_globalAlpha_x = upperBoundOnGlobalAlpha;
//optimize global alpha
//doubleRep globalAlpha_x(prevGlobalAlpha);//DR
MDOUBLE globalAlpha_x = _bestGlobalAlpha;
//newL = minusOne*brentDoubleRep(ax_global,globalAlpha_x,c_globalAlpha_x,
// C_evalGlobalAlpha(et,sc,msp,pProportionDist,weights),
// epsilonLoglikelihoodForGlobalAlphaOptimizationDR,
// &_bestGlobalAlpha);//DR
newL = -brent(ax_global,globalAlpha_x,c_globalAlpha_x,
C_evalGlobalAlpha(et,sc,msp,pProportionDist,weights),
epsilonLoglikelihoodForGlobalAlphaOptimization,
¤tGlobalAlpha);
if (newL >= sumVdouble(_bestLvec))
{
_bestGlobalAlpha = currentGlobalAlpha;
}
else
{//likelihood went down!
LOG(2,<<"likelihood went down in optimizing global alpha"<<endl<<"oldL = "<<sumVdouble(_bestLvec));
}
pProportionDist->setAlpha(_bestGlobalAlpha); //safety
//whether or not likelihood has improved we need to update _bestLvec
_bestLvec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(et,sc,msp,pProportionDist,weights);
LOGnOUT(2,<<"Done with global alpha optimization"<<endl<<"LL:"<<sumVdouble(_bestLvec)<<endl);
LOGnOUT(2,<<"Global Alpha:"<<_bestGlobalAlpha<<endl);
}
if(optimizeTree)
{
if(branchLengthOptimizationMethod == "bblLS"){
bblLSProportionalEB bblLSPEB1(et,sc,msp,pProportionDist,_bestLvec,optimizeSelectedBranches,maxBBLIterations,epsilonLoglikelihoodForBBL);
_bestLvec = bblLSPEB1.getTreeLikelihoodVec();
LOGnOUT(2,<<"Done with bblLS"<<endl<<"LL:"<<sumVdouble(_bestLvec)<<endl);
}
else if(branchLengthOptimizationMethod == "bblEM"){
bblEMProportionalEB bblEMPEB1(et,sc,msp,pProportionDist,optimizeSelectedBranches,NULL,maxBBLIterations,epsilonLoglikelihoodForBBL);
_bestLvec = bblEMPEB1.getTreeLikelihood();
LOGnOUT(2,<<"Done with bblEM. LL: "<<sumVdouble(_bestLvec)<<endl);
}
LOGnOUT(2,<<et.stringTreeInPhylipTreeFormat()<<endl);
}
// check for improvement in the likelihood
if (sumVdouble(_bestLvec) > oldL+epsilonLikelihoodImprovment) {
//all params have already been updated
oldL = sumVdouble(_bestLvec);
} else {
break;
}
LOGnOUT(4,<<"Done with optimization iteration "<<i<<". LL: "<<sumVdouble(_bestLvec)<<endl);
}
}
|