1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
// $Id: bootstrap.cpp 962 2006-11-07 15:13:34Z privmane $
#include "definitions.h"
#include "someUtil.h"
#include "bootstrap.h"
#include "splitTreeUtil.h"
#include <algorithm>
#include <set>
using namespace std;
// -----------------------------------------------------------------------------------------
// ----------------------------- The constructor and its related functions -----------------
// -----------------------------------------------------------------------------------------
bootstrap::bootstrap(const treeVec& treevect):_numTrees(0), _nTaxa(0){
fillFromTreeVec(treevect);
}
bootstrap::bootstrap (const string& filename):_numTrees(0), _nTaxa(0){
fillFromTreeVec(getStartingTreeVecFromFile(filename));
}
void bootstrap::fillFromTreeVec(const treeVec& treevect) {
// for each tree, we compute the set of all splits.
// we update for each split in each tree the split-map.
// so we have the frequency of each split.
for (treeVec::const_iterator i=treevect.begin();i!=treevect.end();++i)
splitTree(*i);
}
// takes a tree, computes all splits and
// enter them into the Splits map
void bootstrap::splitTree(const tree& T){
_numTrees++;
updateNtaxaAndNameMapAndValidateConsistency(T);
splitSubTreeRecursivly(T.getRoot(), true); // the true because we call the recursion with the root. Otherwise it is false;
}
void bootstrap::updateNtaxaAndNameMapAndValidateConsistency(const tree& T) {
if (!_nTaxa) { // only for the first tree, this part intializes the _nameMap and the _nTaxa
_sequenceNames = getSequencesNames(T);
for (_nTaxa=0;_nTaxa<_sequenceNames.size();++_nTaxa) {
_nameMap[_sequenceNames[_nTaxa]] =_nTaxa;
}
}
else {
vector<string> namesInT1 = getSequencesNames(T);
if (namesInT1.size() < _nameMap.size()) {
string errMs1 = "Not all trees have the same number of sequences. ";
errMs1 += "tree number 1 has: ";
errMs1 += int2string(_nameMap.size());
errMs1 += " while tree number: ";
errMs1 += int2string(_numTrees);
errMs1 += " has ";
errMs1 += int2string(namesInT1.size());
errMs1 += "\nError in function bootstrap::splitTree";
errorMsg::reportError(errMs1);
}
for (int i=0; i < namesInT1.size(); ++i) {
if (_nameMap.count(namesInT1[i])==0) {
string errMs = "The taxa ";
errMs += namesInT1[i];
errMs += " found in tree number ";
errMs += int2string(_numTrees);
errMs += " is not present in the first tree. Error in function bootstrap::splitTree";
errorMsg::reportError(errMs);
}
}
}
}
set<int> bootstrap::splitSubTreeRecursivly(const tree::nodeP &n,
const bool isRoot) {//false
// this function assumes that the root of the tree is not a leaf
set<int> s; // the id of all leaves of the subtree of the nodeP n.
for(int i=0; i<n->getNumberOfSons() ;++i) {
set<int> sonSet(splitSubTreeRecursivly(n->getSon(i)));
set<int>::iterator it = sonSet.begin();
for (; it != sonSet.end(); ++it) s.insert(*it);
}
if(isRoot) return s;
if (n->isLeaf()) {
s.insert(idFromName(n->name()));
} else { // this avoids keeping track of trivial splits.
set<int>::const_iterator sBeg(s.begin());
set<int>::const_iterator sEnd(s.end());
split sp(sBeg,sEnd,_nTaxa);
_Splits.add(sp);
}
return(s);
}
// -----------------------------------------------------------------------------------------
// ----------------------------- getWeightsForTree -----------------------------------------
// -----------------------------------------------------------------------------------------
map<int, MDOUBLE> bootstrap::getWeightsForTree(const tree& inTree) const {
map<int, MDOUBLE> v;
recursivelyBuiltBPMap(inTree.getRoot(), v);
return (v);
}
// the function returns the ids of the leaves in the subtree defined by rootOfSubtree.
set<int> bootstrap::recursivelyBuiltBPMap(const tree::nodeP &rootOfSubtree, map<int, MDOUBLE> &v) const {
set<int> s;
for(int i=0;i<rootOfSubtree->getNumberOfSons();++i) {
set<int> sonSet(recursivelyBuiltBPMap(rootOfSubtree->getSon(i),v));
set<int>::iterator it = sonSet.begin();
for (; it != sonSet.end(); ++it) s.insert(*it);
}
if (rootOfSubtree->isLeaf()) {
s.insert(idFromName(rootOfSubtree->name()));
}
set<int>::const_iterator sBeg(s.begin());
set<int>::const_iterator sEnd(s.end());
split sp(sBeg,sEnd,_nTaxa);
v[rootOfSubtree->id()]=(static_cast<MDOUBLE>(_Splits.counts(sp)))/_numTrees;
return(s);
}
// We get different trees, and the id's are not consistent among different trees.
// here, we map a name to a single id.
int bootstrap::idFromName(const string & name) const {
NameMap_t::const_iterator i(_nameMap.find(name));
if (i==_nameMap.end()) {
string s="Can not find an Id for the taxa name:";
s+=name;
s+="\n error in function bootstrap::idFromName\n";
errorMsg::reportError(s);
}
return(i->second);
}
// -----------------------------------------------------------------------------------------
// ----------------------------- Printing the bp ------------------------------------------
// -----------------------------------------------------------------------------------------
void bootstrap::print(ostream& sout){// = cout
_Splits.print(sout);
}
void bootstrap::printTreeWithBPvalues(ostream &out, const tree &t, const map<int, MDOUBLE> & v, const bool printBranchLenght) const{
recursivlyPrintTreeWithBPvalues(out,t.getRoot(),v, printBranchLenght);
out<<";";
}
void bootstrap::recursivlyPrintTreeWithBPvalues(ostream &out,
const tree::nodeP &myNode,
const map<int, MDOUBLE> &v,
const bool printBranchLenght) const {
if (myNode->isLeaf()) {
out << myNode->name();
if (printBranchLenght) out << ":"<<myNode->dis2father();
return;
} else {
out <<"(";
for (int i=0;i<myNode->getNumberOfSons();++i) {
if (i>0) out <<",";
recursivlyPrintTreeWithBPvalues(out, myNode->getSon(i),v, printBranchLenght);
}
out <<")";
if (myNode->isRoot()==false) {
if (printBranchLenght) out<<":"<<myNode->dis2father();
map<int,MDOUBLE>::const_iterator val=v.find(myNode->id());
if ((val!=v.end()) && val->second>0.0) {
out << "["<<val->second<<"]";
}
}
}
}
// for DEBUGGING ONLY:
void bootstrap::print_names(ostream &out) const {
NameMap_t::const_iterator i(_nameMap.begin());
for (;i!=_nameMap.end();++i)
out << "{"<<i->first<<" = "<<i->second<<"}"<<endl;
}
// -----------------------------------------------------------------------------------------
// ----------------------------- Building consensus tree ----------------------------------
// -----------------------------------------------------------------------------------------
// returns the bp values of the consensus tree.
// the idea is to start from the split map, extract a split at a time.
// first, the splits with the highest bp (i.e., in a sorted way).
// Each splits is checked for compatibility with the consensus tree constructed so far.
// if it is compatible, it is added to the consensus.
// Otherwise - it is discarded.
// returns the consensus tree
tree bootstrap::consensusTree(const MDOUBLE threshold) const {// =0.5
// 1. get the names of the sequences
vector<string> names;
for (NameMap_t::const_iterator i(_nameMap.begin());i!=_nameMap.end();++i)
names.push_back(i->first);
// 2. create a star tree
tree res = starTree(names);
// 3. get the sorted vector of the splits from which the consensus is to be built.
vector<pair<split,int> > sortedSplits = _Splits.sortSplits();
// 4. get a list of compatible splits
MDOUBLE thresholdForNumTrees = threshold * _numTrees;
vector<split> consensus;
for (int k=0; k < sortedSplits.size(); ++k) {
bool compatible = true;
if (sortedSplits[k].second < thresholdForNumTrees) break;
for (vector<split>::const_iterator j=consensus.begin(); j != consensus.end(); ++j) {
if (!(sortedSplits[k].first.compatible(*j))) {
compatible=false;
break;
}
}
if (compatible) {
consensus.push_back(sortedSplits[k].first);
}
}
// 5. Now we build a tree from all the compatible splits
for (vector<split>::iterator i1 = consensus.begin();i1!=consensus.end();++i1) {
applySplit(res,*i1,_nameMap);
}
res.create_names_to_internal_nodes();
res.makeSureAllBranchesArePositive();
return (res);
}
|