1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
// $Id: chebyshevAccelerator.cpp 962 2006-11-07 15:13:34Z privmane $
#include "chebyshevAccelerator.h"
#include <cmath>
#include <cassert>
chebyshevAccelerator::chebyshevAccelerator(const chebyshevAccelerator& other):
_alphabetSize(other._alphabetSize),
_totalNumOfCoef(other._totalNumOfCoef),
_usingNumberOfCoef(other._usingNumberOfCoef),
_pb(NULL),
_rightRange(other._rightRange),
_leftRange(other._leftRange){
if (other._pb != NULL) _pb = other._pb->clone();
chebi_coff=other.chebi_coff;
chebi_dervation_coff=other.chebi_dervation_coff;
chebi_sec_dervation_coff=other.chebi_sec_dervation_coff;
}
chebyshevAccelerator::chebyshevAccelerator(
replacementModel* pb,
const int alphanetSize,
const int totalNumOfCoef,
const int usingNumberOfCoef,
const MDOUBLE rightRange,
const MDOUBLE leftRange
): _alphabetSize(alphanetSize),
_totalNumOfCoef(totalNumOfCoef), _usingNumberOfCoef(usingNumberOfCoef),_pb(pb->clone()), _rightRange(rightRange), _leftRange(leftRange)
//----------------------------------------------------------------------------------
//input: non
//output: non
//doing: filling the member chebi_coff[][][]; chebi_coff[1][2][4] is the forth
// chebichev coefficient in the chebichev polynom of the function
// slow_pij(1,2,t);
//----------------------------------------------------------------------------------
{
int tmp, tmp1;
for (tmp = 0; tmp < _alphabetSize ; tmp ++) {
chebi_coff.resize(_alphabetSize);
chebi_dervation_coff.resize(_alphabetSize);
chebi_sec_dervation_coff.resize(_alphabetSize);
for (tmp1 = 0; tmp1 < _alphabetSize ; tmp1 ++) {
chebi_coff[tmp].resize(_alphabetSize);
chebi_dervation_coff[tmp].resize(_alphabetSize);
chebi_sec_dervation_coff[tmp].resize(_alphabetSize);
for (tmp1 = 0; tmp1 < _alphabetSize ; tmp1 ++) {
chebi_coff[tmp][tmp1].resize(_totalNumOfCoef);
chebi_dervation_coff[tmp][tmp1].resize(_totalNumOfCoef);
chebi_sec_dervation_coff[tmp][tmp1].resize(_totalNumOfCoef);
}
}
}
Vdouble coffij(_totalNumOfCoef);
Vdouble coffij_of_derviation(_totalNumOfCoef);
Vdouble coffij_of_second_derivation(_totalNumOfCoef);
for (int from_aa =0; from_aa<_alphabetSize ; ++ from_aa)
{
for (int to_aa =0; to_aa<_alphabetSize ; ++ to_aa)
{
chebft(coffij,_totalNumOfCoef,from_aa,to_aa);
chder(coffij,coffij_of_derviation,_totalNumOfCoef);
chder(coffij_of_derviation,coffij_of_second_derivation,_totalNumOfCoef);
for (int tmp=0; tmp<_totalNumOfCoef;++tmp)
{
chebi_coff[from_aa][to_aa][tmp] = coffij[tmp];
chebi_dervation_coff[from_aa][to_aa][tmp] = coffij_of_derviation[tmp];
chebi_sec_dervation_coff[from_aa][to_aa][tmp] = coffij_of_second_derivation[tmp];
}
}
}
}
void chebyshevAccelerator::chebft(Vdouble& c, int n, int from_aa, int to_aa) {
//----------------------------------------------------------------------------------
//input: c[] is the vector where the cofficient will be
// from aa and to_aa are for chosing the right function to be developed
//output: non
//doing: calculating the chebichev coefficient in the chebichev polynom of the function
// slow_pij(from_aa,to_aa,t), and put them in the c[] vector
//----------------------------------------------------------------------------------
int k,j;
MDOUBLE fac,bpa,bma;
Vdouble f;
f.resize(n);
bma=0.5*(_rightRange-_leftRange);
bpa=0.5*(_rightRange+_leftRange);
for (k=0;k<n;k++) {
MDOUBLE y=cos(3.141592653589793*(k+0.5)/n);
f[k]= _pb->Pij_t(from_aa,to_aa,y*bma+bpa); //(*func)(y*bma+bpa);
}
fac=2.0/n;
for (j=0;j<n;j++) {
MDOUBLE sum=0.0;
for (k=0;k<n;k++)
sum += f[k]*cos(3.141592653589793*j*(k+0.5)/n);
c[j]=fac*sum;
}
}
const MDOUBLE chebyshevAccelerator::Pij_t(const int from_aa, const int to_aa, const MDOUBLE x) const
//----------------------------------------------------------------------------------
//input: like pij_t
//output: the probabilty
//doing: calculating with the polinom of chebi and via eigenvalue decomposition
//----------------------------------------------------------------------------------
{
MDOUBLE d=0.0,dd=0.0,sv,y,y2,check;
int j;
if ((x-_leftRange)*(x-_rightRange) > 0.0) {
return _pb->Pij_t(from_aa,to_aa,x);
// errorMsg::reportError("x not in range in routine fast_Pij_t");// also quit the program
}
y2=2.0*(y=(2.0*x-_leftRange-_rightRange)/(_rightRange-_leftRange));
for (j=_usingNumberOfCoef;j>0;j--) {
sv=d;
d=y2*d-dd+chebi_coff[from_aa][to_aa][j];
dd=sv;
}
check = y*d-dd+0.5*chebi_coff[from_aa][to_aa][0];
if ((check>1) || (check<=0)) check = _pb->Pij_t(from_aa,to_aa,x);
assert(check<=1);
assert(check>=0);
return check;
}
const MDOUBLE chebyshevAccelerator::dPij_dt(const int from_aa, const int to_aa, const MDOUBLE x) const
//----------------------------------------------------------------------------------
//input: like pij_t
//output: the derivation of probabilty
//doing: calculating with the polinom of chebi and via eigenvalue decomposition
//----------------------------------------------------------------------------------
{
MDOUBLE d=0.0,dd=0.0,sv,y,y2;
int j;
if ((x-_leftRange)*(x-_rightRange) > 0.0) {
return _pb->dPij_dt(from_aa,to_aa,x);
}
y2=2.0*(y=(2.0*x-_leftRange-_rightRange)/(_rightRange-_leftRange));
for (j=_usingNumberOfCoef;j>0;j--) {
sv=d;
d=y2*d-dd+chebi_dervation_coff[from_aa][to_aa][j];
dd=sv;
}
return y*d-dd+0.5*chebi_dervation_coff[from_aa][to_aa][0];
}
const MDOUBLE chebyshevAccelerator::d2Pij_dt2(const int from_aa, const int to_aa, const MDOUBLE x) const {
//----------------------------------------------------------------------------------
//input: like pij_t
//output: the second derivation of the probabilty
//doing: calculating with the polynom of chebi and via eigenvalue decomposition
//----------------------------------------------------------------------------------
MDOUBLE d=0.0,dd=0.0,sv,y,y2;
int j;
if ((x-_leftRange)*(x-_rightRange) > 0.0) {
return _pb->d2Pij_dt2(from_aa,to_aa,x);
}
y2=2.0*(y=(2.0*x-_leftRange-_rightRange)/(_rightRange-_leftRange));
for (j=_usingNumberOfCoef;j>0;j--) {
sv=d;
d=y2*d-dd+chebi_sec_dervation_coff[from_aa][to_aa][j];
dd=sv;
}
return y*d-dd+0.5*chebi_sec_dervation_coff[from_aa][to_aa][0];
}
void chebyshevAccelerator::chder(Vdouble &c, Vdouble &cder, int n) {
//----------------------------------------------------------------------------------
//input: chebicev coff of f(x) i.e. in c[]. n is the vector size
//output: chebicev coff of df(x)/dx i.e. in cder[]
//doing: calculating the coff of the dervation from the coff of f.
//reference:numercal recepies in c, pg 195.
//----------------------------------------------------------------------------------
int j;
MDOUBLE con;
cder[n-1]=0.0;
cder[n-2]=2*(n-1)*c[n-1];
for (j=n-3;j>=0;j--)
cder[j]=cder[j+2]+2*(j+1)*c[j+1];
con=2.0f/(_rightRange-_leftRange);
for (j=0;j<n;j++)
cder[j] *= con;
}
|