File: computeJumps.cpp

package info (click to toggle)
fastml 3.11-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,772 kB
  • sloc: cpp: 48,522; perl: 3,588; ansic: 819; makefile: 386; python: 83; sh: 55
file content (353 lines) | stat: -rw-r--r-- 14,630 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#include "computeJumps.h"
#include "talRandom.h"
#include "someUtil.h"
#include "matrixUtils.h"
#include <algorithm>


computeJumps::computeJumps(const MDOUBLE Lambda1, const MDOUBLE Lambda2 , const MDOUBLE r, const int maxNumOfChangesPerBranchSum)
: _Lambda1(Lambda1), _Lambda2(Lambda2),_maxNumOfChangesPerBranchSum(maxNumOfChangesPerBranchSum)
{
	if(_Lambda1==_Lambda2)
		_Lambda1+=EPSILON; // Patch: fix a BUG, if gain==loss the probability of transition from 0 to 1 given states start==End==1, is NA, thus add epsilon

	_gFuncStart0		= gFunc(_Lambda1, _Lambda2, r);
	_gFuncStart0MinusR	= gFunc(_Lambda1, _Lambda2, -r);
	_gFuncStart1		= gFunc(_Lambda2, _Lambda1, r);
	_gFuncStart1MinusR	= gFunc(_Lambda2, _Lambda1, -r);
}
computeJumps::~computeJumps()
{
}


/********************************************************************************************
getExpectation
*********************************************************************************************/
MDOUBLE computeJumps::getExpectation(const MDOUBLE BranchLength, int terminalStart, int terminalEnd, int fromId, int toId)
{
	if(BranchLength>=0){
		if(fromId==0 && toId==1){ // Gain
			if(terminalStart==0 && terminalEnd==1)
				return gainExpGiven01(BranchLength);
			if(terminalStart==0 && terminalEnd==0)
				return gainExpGiven00(BranchLength);
			if(terminalStart==1 && terminalEnd==1)
				return gainExpGiven11(BranchLength);
			else //(terminalStart==1 && terminalEnd==0)
				return gainExpGiven10(BranchLength);	
		}
		if(fromId==1 && toId==0){ // Loss
			if(terminalStart==0 && terminalEnd==1)
				return lossExpGiven01(BranchLength);	
			if(terminalStart==0 && terminalEnd==0)
				return lossExpGiven00(BranchLength);
			if(terminalStart==1 && terminalEnd==1)
				return lossExpGiven11(BranchLength);
			else //(terminalStart==1 && terminalEnd==0)
				return lossExpGiven10(BranchLength);
		}
		else
			return 0;
	}
	else
		return 0;

}
/********************************************************************************************
*********************************************************************************************/
MDOUBLE computeJumps::getTotalExpectation(const MDOUBLE BranchLength, int terminalStart, int terminalEnd)
{
	if(BranchLength>=0){
			if(terminalStart==0 && terminalEnd==1)
				return m01(BranchLength);
			if(terminalStart==0 && terminalEnd==0)
				return m00(BranchLength);
			if(terminalStart==1 && terminalEnd==1)
				return m11(BranchLength);
			else //(terminalStart==1 && terminalEnd==0)
				return m10(BranchLength);
	}
	else
		return 0;

}


/********************************************************************************************
gainExpGivenXY lossExpGivenXY
// Note: divide by Pij, since the computation is gainExp and End=0 given start=0
*********************************************************************************************/
MDOUBLE computeJumps::gainExpGiven01(MDOUBLE BranchLength){
	return 0.5*(m01(BranchLength) +Pij_t(0,1,BranchLength))/Pij_t(0,1,BranchLength);
}
MDOUBLE computeJumps::gainExpGiven00(MDOUBLE BranchLength){
	return 0.5*(m00(BranchLength)/Pij_t(0,0,BranchLength));
}
MDOUBLE computeJumps::gainExpGiven11(MDOUBLE BranchLength){
	return 0.5*(m11(BranchLength)/Pij_t(1,1,BranchLength) ); //???
}
MDOUBLE computeJumps::gainExpGiven10(MDOUBLE BranchLength){
	return m10(BranchLength)/Pij_t(1,0,BranchLength) - lossExpGiven10(BranchLength); //???
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::lossExpGiven01(MDOUBLE BranchLength){
	return m01(BranchLength)/Pij_t(0,1,BranchLength) - gainExpGiven01(BranchLength); //???
}
MDOUBLE computeJumps::lossExpGiven00(MDOUBLE BranchLength){
	return m00(BranchLength)/Pij_t(0,0,BranchLength)  - gainExpGiven00(BranchLength); //???
}
MDOUBLE computeJumps::lossExpGiven11(MDOUBLE BranchLength){
	return m11(BranchLength)/Pij_t(1,1,BranchLength) - gainExpGiven11(BranchLength); //???
}
MDOUBLE computeJumps::lossExpGiven10(MDOUBLE BranchLength){
	return 0.5*(m10(BranchLength) + Pij_t(1,0,BranchLength) )/Pij_t(1,0,BranchLength); //???
	//return m10(BranchLength)/Pij_t(1,0,BranchLength) - gainExpGiven10(BranchLength); //???
}



/********************************************************************************************
getProbability
*********************************************************************************************/
MDOUBLE computeJumps::getProb(const MDOUBLE BranchLength, int terminalStart, int terminalEnd, int fromId, int toId)
{
	if(BranchLength>=0){
		if(fromId==0 && toId==1){ // Gain
			if(terminalStart==0 && terminalEnd==1)
				return gainProbGiven01(BranchLength);
			if(terminalStart==0 && terminalEnd==0)
				return gainProbGiven00(BranchLength);
			if(terminalStart==1 && terminalEnd==1)
				return gainProbGiven11(BranchLength);
			else //(terminalStart==1 && terminalEnd==0)
				return gainProbGiven10(BranchLength); // if g=l, return -NaN
		}
		if(fromId==1 && toId==0){ // Loss
			if(terminalStart==0 && terminalEnd==1)
				return lossProbGiven01(BranchLength); // if g=l, return -NaN
			if(terminalStart==0 && terminalEnd==0)
				return lossProbGiven00(BranchLength);
			if(terminalStart==1 && terminalEnd==1)
				return lossProbGiven11(BranchLength);
			else //(terminalStart==1 && terminalEnd==0)
				return lossProbGiven10(BranchLength);
		}
		else
			return 0;
	}
	else
		return 0;

}
//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::gainProbGiven01(MDOUBLE BranchLength){
	MDOUBLE probSum = 1.0;
	return probSum;
}
MDOUBLE computeJumps::gainProbGiven00(MDOUBLE BranchLength){
	MDOUBLE probSum = 0.0;
	//A Sum(2,4,6,...) changes
	//for(int k = 1; k<=_maxNumOfChangesPerBranchSum; ++k){
	//	probSum += _gFuncStart0.qFunc_2k(BranchLength,k);
	//}
	//B 1 - Sum(uneven changes) - zeroEvenChanges
	probSum = 1 - 0.5*(_gFuncStart0.gFunc_(BranchLength) - _gFuncStart0MinusR.gFunc_(BranchLength)) - _gFuncStart0.qFunc_2k(BranchLength,0);
	return probSum/Pij_t(0,0,BranchLength);
}
MDOUBLE computeJumps::gainProbGiven11(MDOUBLE BranchLength){
	MDOUBLE probSum = 0.0;
	//A Sum(2,4,6,...) changes
	//for(int k = 1; k<=_maxNumOfChangesPerBranchSum; ++k){
	//	probSum += _gFuncStart1.qFunc_2k(BranchLength,k);	//? _gFuncStart1 or _gFuncStart0
	//}
	//B 1 - Sum(uneven changes) - zeroEvenChanges
	probSum = 1 - 0.5*(_gFuncStart1.gFunc_(BranchLength) - _gFuncStart1MinusR.gFunc_(BranchLength)) - _gFuncStart1.qFunc_2k(BranchLength,0);
	return probSum/Pij_t(1,1,BranchLength);
}
MDOUBLE computeJumps::gainProbGiven10(MDOUBLE BranchLength){
	MDOUBLE probSum = 0.0;
	//A Sum(3,5,7,...) changes
	//for(int k = 2; k<=_maxNumOfChangesPerBranchSum; ++k){
	//	probSum += _gFuncStart1.qFunc_2k_1(BranchLength,k);
	//}
	//B 1 - Sum(even changes) - oneUnEvenChanges
	probSum = 1 - 0.5*(_gFuncStart1.gFunc_(BranchLength) + _gFuncStart1MinusR.gFunc_(BranchLength)) - _gFuncStart1.qFunc_2k_1(BranchLength,1);
	return probSum/Pij_t(1,0,BranchLength);
}

//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::lossProbGiven01(MDOUBLE BranchLength){
	MDOUBLE probSum = 0.0;
	//A Sum(3,5,7,...) changes
	//for(int k = 2; k<=_maxNumOfChangesPerBranchSum; ++k){
	//	probSum += _gFuncStart0.qFunc_2k_1(BranchLength,k);
	//}
	//B 1 - Sum(even changes) - oneUnEvenChanges
	probSum = 1 - 0.5*(_gFuncStart0.gFunc_(BranchLength) + _gFuncStart0MinusR.gFunc_(BranchLength)) - _gFuncStart0.qFunc_2k_1(BranchLength,1);
	return probSum/Pij_t(0,1,BranchLength);
}
MDOUBLE computeJumps::lossProbGiven00(MDOUBLE BranchLength){
	MDOUBLE probSum = 0.0;
	//A Sum(2,4,6,...) changes
	//for(int k = 1; k<=_maxNumOfChangesPerBranchSum; ++k){
	//	probSum += _gFuncStart0.qFunc_2k(BranchLength,k);
	//}
	//B 1 - Sum(uneven changes) - zeroEvenChanges
	probSum = 1 - 0.5*(_gFuncStart0.gFunc_(BranchLength) - _gFuncStart0MinusR.gFunc_(BranchLength)) - _gFuncStart0.qFunc_2k(BranchLength,0);
	return probSum/Pij_t(0,0,BranchLength);
}

MDOUBLE computeJumps::lossProbGiven11(MDOUBLE BranchLength){
	MDOUBLE probSum = 0.0;
	//A Sum(2,4,6,...) changes
	//for(int k = 1; k<=_maxNumOfChangesPerBranchSum; ++k){
	//	probSum += _gFuncStart1.qFunc_2k(BranchLength,k);	//? _gFuncStart1 or _gFuncStart0
	//}
	//B 1 - Sum(uneven changes) - zeroEvenChanges
	probSum = 1 - 0.5*(_gFuncStart1.gFunc_(BranchLength) - _gFuncStart1MinusR.gFunc_(BranchLength)) - _gFuncStart1.qFunc_2k(BranchLength,0);
	return probSum/Pij_t(1,1,BranchLength);
}
MDOUBLE computeJumps::lossProbGiven10(MDOUBLE BranchLength){
	MDOUBLE probSum = 1.0;
	return probSum;
}


/********************************************************************************************
// mij(t) = E(N, end=j | start=i)
*********************************************************************************************/
MDOUBLE computeJumps::m01(MDOUBLE BranchLength){
	return 0.5 *( _gFuncStart0.gFunc_dr(BranchLength) - _gFuncStart0MinusR.gFunc_dr(BranchLength));
}
MDOUBLE computeJumps::m00(MDOUBLE BranchLength){
	return 0.5 *( _gFuncStart0.gFunc_dr(BranchLength) + _gFuncStart0MinusR.gFunc_dr(BranchLength));
}
MDOUBLE computeJumps::m11(MDOUBLE BranchLength){
	return 0.5 *( _gFuncStart1.gFunc_dr(BranchLength) + _gFuncStart1MinusR.gFunc_dr(BranchLength));
}
MDOUBLE computeJumps::m10(MDOUBLE BranchLength){
	return 0.5 *( _gFuncStart1.gFunc_dr(BranchLength) - _gFuncStart1MinusR.gFunc_dr(BranchLength));
}

/********************************************************************************************
gFunc_dr
*********************************************************************************************/
MDOUBLE computeJumps::gFunc_dr(MDOUBLE BranchLength, int startState){
	// test:
	if(startState == 0){
		return _gFuncStart0.g1Func_dr(BranchLength) + _gFuncStart0.g2Func_dr(BranchLength);
	}
	if(startState == 1)
		return _gFuncStart1.g1Func_dr(BranchLength) + _gFuncStart1.g2Func_dr(BranchLength);
	else
		return 0;
}







/********************************************************************************************
gFunc
*********************************************************************************************/
computeJumps::gFunc::gFunc(const MDOUBLE Lambda1, const MDOUBLE Lambda2 , const MDOUBLE r)
: _Lambda1(Lambda1), _Lambda2(Lambda2), _r(r)
{
	_delta = sqrt((_Lambda1+_Lambda2)*(_Lambda1+_Lambda2) + 4*(_r*_r - 1)*_Lambda1*_Lambda2);
	_delta_dr = (4*_r*_Lambda1*_Lambda2)/_delta;

	_Alpha1 = 0.5*(-_Lambda1-_Lambda2 +_delta);
	_Alpha2 = 0.5*(-_Lambda1-_Lambda2 -_delta);

	_Alpha1_dr =  0.5*_delta_dr;
	_Alpha2_dr = -0.5*_delta_dr;

	_Alpha1_2    = _delta;		//= _Alpha1 - _Alpha2;
	_Alpha1_2_dr = _delta_dr;	//= _Alpha1_dr - _Alpha2_dr;

	_g1Part = ( (_r-1)*_Lambda1 - _Alpha2)/_Alpha1_2;
	_g2Part = (-(_r-1)*_Lambda1 + _Alpha1)/_Alpha1_2;

	_g1Part_dr = ( _Alpha1_2*( _Lambda1-_Alpha2_dr) - ( (_r-1)*_Lambda1 - _Alpha2)*_Alpha1_2_dr )/(_Alpha1_2*_Alpha1_2);
	_g2Part_dr = ( _Alpha1_2*(-_Lambda1+_Alpha1_dr) - (-(_r-1)*_Lambda1 + _Alpha1)*_Alpha1_2_dr )/(_Alpha1_2*_Alpha1_2);

}
//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::gFunc::gFunc_dr(MDOUBLE BranchLength){
	return sign(_r)*(g1Func_dr(BranchLength) + g2Func_dr(BranchLength));
}
MDOUBLE computeJumps::gFunc::g1Func_dr(MDOUBLE BranchLength){
	return _g1Part_dr*g1Exp(BranchLength) + _g1Part*g1Exp(BranchLength)*BranchLength*_Alpha1_dr;
}
MDOUBLE computeJumps::gFunc::g2Func_dr(MDOUBLE BranchLength){
	return _g2Part_dr*g2Exp(BranchLength) +  _g2Part*g2Exp(BranchLength)*BranchLength*_Alpha2_dr;
}

//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::gFunc::g1Exp(MDOUBLE BranchLength){
	return exp(_Alpha1*BranchLength);
}
MDOUBLE computeJumps::gFunc::g2Exp(MDOUBLE BranchLength){
	return exp(_Alpha2*BranchLength);
}

MDOUBLE computeJumps::gFunc::gFunc_(MDOUBLE BranchLength){
	return _g1Part*g1Exp(BranchLength) + _g2Part*g2Exp(BranchLength);
};

MDOUBLE computeJumps::gFunc::_A_(int k, int i){return BinomialCoeff((k+i-1),i) * pow(-1.0,i)*pow(_Lambda1,k)*pow(_Lambda2,(k-1)) / pow((_Lambda2-_Lambda1),(k+i))  ;	}
MDOUBLE computeJumps::gFunc::_B_(int k, int i){return BinomialCoeff((k+i-1),i) * pow(-1.0,i)*pow(_Lambda1,k)*pow(_Lambda2,(k-1)) / pow((_Lambda1-_Lambda2),(k+i))  ;	}
MDOUBLE computeJumps::gFunc::_C_(int k, int i){return BinomialCoeff((k+i-1),i) * pow(-1.0,i)*pow(_Lambda1,k)*pow(_Lambda2,(k))   / pow((_Lambda2-_Lambda1),(k+i))  ;	}
MDOUBLE computeJumps::gFunc::_D_(int k, int i){return BinomialCoeff((k+i),i)   * pow(-1.0,i)*pow(_Lambda1,k)*pow(_Lambda2,(k))   / pow((_Lambda1-_Lambda2),(k+i+1));	}

// prob for (2k-1) transitions (gains and losses), given start=0
MDOUBLE computeJumps::gFunc::qFunc_2k_1  (MDOUBLE BranchLength, int k){
	MDOUBLE qSUM = 0.0;
	for(int i=1; i<=k; ++i){
		qSUM += _A_(k,(k-i))* pow(BranchLength,(i-1))/factorial(i-1) * exp(-_Lambda1*BranchLength)
			+ _B_(k,(k-i))* pow(BranchLength,(i-1))/factorial(i-1) * exp(-_Lambda2*BranchLength);
	}
	return qSUM;
}
// prob for (2k) transitions (gains and losses), given start=0
MDOUBLE computeJumps::gFunc::qFunc_2k  (MDOUBLE BranchLength, int k){
	MDOUBLE qSUM = 0.0;
	for(int i=1; i<=(k+1); ++i){
		qSUM += _C_(k,(k-i+1))* pow(BranchLength,(i-1))/factorial(i-1)*exp(-_Lambda1*BranchLength);
	}
	for(int i=1; i<=k; ++i){
		qSUM +=  _D_(k,(k-i))* pow(BranchLength,(i-1))/factorial(i-1)*exp(-_Lambda2*BranchLength);
	}
	return qSUM;
}






/********************************************************************************************
Pij_t - Based on Analytic solution
*********************************************************************************************/
MDOUBLE computeJumps::Pij_t(const int i,const int j, const MDOUBLE d)  {
	MDOUBLE gain = _Lambda1;
	MDOUBLE loss = _Lambda2;
	MDOUBLE eigenvalue =  -(gain + loss);


	VVdouble Pt;
	int AlphaSize = 2;
	resizeMatrix(Pt,AlphaSize,AlphaSize);
	int caseNum = i + j*2;
	switch (caseNum) {
		case 0 : Pt[0][0] =  loss/(-eigenvalue) + exp(eigenvalue*d)*(1 - loss/(-eigenvalue)); break;
		case 1 : Pt[1][0] =  loss/(-eigenvalue) - exp(eigenvalue*d)*(1 - gain/(-eigenvalue)); break;
		case 2 : Pt[0][1] =  gain/(-eigenvalue) - exp(eigenvalue*d)*(1 - loss/(-eigenvalue)); break;
		case 3 : Pt[1][1] =  gain/(-eigenvalue) + exp(eigenvalue*d)*(1 - gain/(-eigenvalue));  break;
	}
	MDOUBLE val = (Pt[i][j]);
	return val; 
}