1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
#include "computeJumps.h"
#include "talRandom.h"
#include "someUtil.h"
#include "matrixUtils.h"
#include <algorithm>
computeJumps::computeJumps(const MDOUBLE Lambda1, const MDOUBLE Lambda2 , const MDOUBLE r, const int maxNumOfChangesPerBranchSum)
: _Lambda1(Lambda1), _Lambda2(Lambda2),_maxNumOfChangesPerBranchSum(maxNumOfChangesPerBranchSum)
{
if(_Lambda1==_Lambda2)
_Lambda1+=EPSILON; // Patch: fix a BUG, if gain==loss the probability of transition from 0 to 1 given states start==End==1, is NA, thus add epsilon
_gFuncStart0 = gFunc(_Lambda1, _Lambda2, r);
_gFuncStart0MinusR = gFunc(_Lambda1, _Lambda2, -r);
_gFuncStart1 = gFunc(_Lambda2, _Lambda1, r);
_gFuncStart1MinusR = gFunc(_Lambda2, _Lambda1, -r);
}
computeJumps::~computeJumps()
{
}
/********************************************************************************************
getExpectation
*********************************************************************************************/
MDOUBLE computeJumps::getExpectation(const MDOUBLE BranchLength, int terminalStart, int terminalEnd, int fromId, int toId)
{
if(BranchLength>=0){
if(fromId==0 && toId==1){ // Gain
if(terminalStart==0 && terminalEnd==1)
return gainExpGiven01(BranchLength);
if(terminalStart==0 && terminalEnd==0)
return gainExpGiven00(BranchLength);
if(terminalStart==1 && terminalEnd==1)
return gainExpGiven11(BranchLength);
else //(terminalStart==1 && terminalEnd==0)
return gainExpGiven10(BranchLength);
}
if(fromId==1 && toId==0){ // Loss
if(terminalStart==0 && terminalEnd==1)
return lossExpGiven01(BranchLength);
if(terminalStart==0 && terminalEnd==0)
return lossExpGiven00(BranchLength);
if(terminalStart==1 && terminalEnd==1)
return lossExpGiven11(BranchLength);
else //(terminalStart==1 && terminalEnd==0)
return lossExpGiven10(BranchLength);
}
else
return 0;
}
else
return 0;
}
/********************************************************************************************
*********************************************************************************************/
MDOUBLE computeJumps::getTotalExpectation(const MDOUBLE BranchLength, int terminalStart, int terminalEnd)
{
if(BranchLength>=0){
if(terminalStart==0 && terminalEnd==1)
return m01(BranchLength);
if(terminalStart==0 && terminalEnd==0)
return m00(BranchLength);
if(terminalStart==1 && terminalEnd==1)
return m11(BranchLength);
else //(terminalStart==1 && terminalEnd==0)
return m10(BranchLength);
}
else
return 0;
}
/********************************************************************************************
gainExpGivenXY lossExpGivenXY
// Note: divide by Pij, since the computation is gainExp and End=0 given start=0
*********************************************************************************************/
MDOUBLE computeJumps::gainExpGiven01(MDOUBLE BranchLength){
return 0.5*(m01(BranchLength) +Pij_t(0,1,BranchLength))/Pij_t(0,1,BranchLength);
}
MDOUBLE computeJumps::gainExpGiven00(MDOUBLE BranchLength){
return 0.5*(m00(BranchLength)/Pij_t(0,0,BranchLength));
}
MDOUBLE computeJumps::gainExpGiven11(MDOUBLE BranchLength){
return 0.5*(m11(BranchLength)/Pij_t(1,1,BranchLength) ); //???
}
MDOUBLE computeJumps::gainExpGiven10(MDOUBLE BranchLength){
return m10(BranchLength)/Pij_t(1,0,BranchLength) - lossExpGiven10(BranchLength); //???
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::lossExpGiven01(MDOUBLE BranchLength){
return m01(BranchLength)/Pij_t(0,1,BranchLength) - gainExpGiven01(BranchLength); //???
}
MDOUBLE computeJumps::lossExpGiven00(MDOUBLE BranchLength){
return m00(BranchLength)/Pij_t(0,0,BranchLength) - gainExpGiven00(BranchLength); //???
}
MDOUBLE computeJumps::lossExpGiven11(MDOUBLE BranchLength){
return m11(BranchLength)/Pij_t(1,1,BranchLength) - gainExpGiven11(BranchLength); //???
}
MDOUBLE computeJumps::lossExpGiven10(MDOUBLE BranchLength){
return 0.5*(m10(BranchLength) + Pij_t(1,0,BranchLength) )/Pij_t(1,0,BranchLength); //???
//return m10(BranchLength)/Pij_t(1,0,BranchLength) - gainExpGiven10(BranchLength); //???
}
/********************************************************************************************
getProbability
*********************************************************************************************/
MDOUBLE computeJumps::getProb(const MDOUBLE BranchLength, int terminalStart, int terminalEnd, int fromId, int toId)
{
if(BranchLength>=0){
if(fromId==0 && toId==1){ // Gain
if(terminalStart==0 && terminalEnd==1)
return gainProbGiven01(BranchLength);
if(terminalStart==0 && terminalEnd==0)
return gainProbGiven00(BranchLength);
if(terminalStart==1 && terminalEnd==1)
return gainProbGiven11(BranchLength);
else //(terminalStart==1 && terminalEnd==0)
return gainProbGiven10(BranchLength); // if g=l, return -NaN
}
if(fromId==1 && toId==0){ // Loss
if(terminalStart==0 && terminalEnd==1)
return lossProbGiven01(BranchLength); // if g=l, return -NaN
if(terminalStart==0 && terminalEnd==0)
return lossProbGiven00(BranchLength);
if(terminalStart==1 && terminalEnd==1)
return lossProbGiven11(BranchLength);
else //(terminalStart==1 && terminalEnd==0)
return lossProbGiven10(BranchLength);
}
else
return 0;
}
else
return 0;
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::gainProbGiven01(MDOUBLE BranchLength){
MDOUBLE probSum = 1.0;
return probSum;
}
MDOUBLE computeJumps::gainProbGiven00(MDOUBLE BranchLength){
MDOUBLE probSum = 0.0;
//A Sum(2,4,6,...) changes
//for(int k = 1; k<=_maxNumOfChangesPerBranchSum; ++k){
// probSum += _gFuncStart0.qFunc_2k(BranchLength,k);
//}
//B 1 - Sum(uneven changes) - zeroEvenChanges
probSum = 1 - 0.5*(_gFuncStart0.gFunc_(BranchLength) - _gFuncStart0MinusR.gFunc_(BranchLength)) - _gFuncStart0.qFunc_2k(BranchLength,0);
return probSum/Pij_t(0,0,BranchLength);
}
MDOUBLE computeJumps::gainProbGiven11(MDOUBLE BranchLength){
MDOUBLE probSum = 0.0;
//A Sum(2,4,6,...) changes
//for(int k = 1; k<=_maxNumOfChangesPerBranchSum; ++k){
// probSum += _gFuncStart1.qFunc_2k(BranchLength,k); //? _gFuncStart1 or _gFuncStart0
//}
//B 1 - Sum(uneven changes) - zeroEvenChanges
probSum = 1 - 0.5*(_gFuncStart1.gFunc_(BranchLength) - _gFuncStart1MinusR.gFunc_(BranchLength)) - _gFuncStart1.qFunc_2k(BranchLength,0);
return probSum/Pij_t(1,1,BranchLength);
}
MDOUBLE computeJumps::gainProbGiven10(MDOUBLE BranchLength){
MDOUBLE probSum = 0.0;
//A Sum(3,5,7,...) changes
//for(int k = 2; k<=_maxNumOfChangesPerBranchSum; ++k){
// probSum += _gFuncStart1.qFunc_2k_1(BranchLength,k);
//}
//B 1 - Sum(even changes) - oneUnEvenChanges
probSum = 1 - 0.5*(_gFuncStart1.gFunc_(BranchLength) + _gFuncStart1MinusR.gFunc_(BranchLength)) - _gFuncStart1.qFunc_2k_1(BranchLength,1);
return probSum/Pij_t(1,0,BranchLength);
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::lossProbGiven01(MDOUBLE BranchLength){
MDOUBLE probSum = 0.0;
//A Sum(3,5,7,...) changes
//for(int k = 2; k<=_maxNumOfChangesPerBranchSum; ++k){
// probSum += _gFuncStart0.qFunc_2k_1(BranchLength,k);
//}
//B 1 - Sum(even changes) - oneUnEvenChanges
probSum = 1 - 0.5*(_gFuncStart0.gFunc_(BranchLength) + _gFuncStart0MinusR.gFunc_(BranchLength)) - _gFuncStart0.qFunc_2k_1(BranchLength,1);
return probSum/Pij_t(0,1,BranchLength);
}
MDOUBLE computeJumps::lossProbGiven00(MDOUBLE BranchLength){
MDOUBLE probSum = 0.0;
//A Sum(2,4,6,...) changes
//for(int k = 1; k<=_maxNumOfChangesPerBranchSum; ++k){
// probSum += _gFuncStart0.qFunc_2k(BranchLength,k);
//}
//B 1 - Sum(uneven changes) - zeroEvenChanges
probSum = 1 - 0.5*(_gFuncStart0.gFunc_(BranchLength) - _gFuncStart0MinusR.gFunc_(BranchLength)) - _gFuncStart0.qFunc_2k(BranchLength,0);
return probSum/Pij_t(0,0,BranchLength);
}
MDOUBLE computeJumps::lossProbGiven11(MDOUBLE BranchLength){
MDOUBLE probSum = 0.0;
//A Sum(2,4,6,...) changes
//for(int k = 1; k<=_maxNumOfChangesPerBranchSum; ++k){
// probSum += _gFuncStart1.qFunc_2k(BranchLength,k); //? _gFuncStart1 or _gFuncStart0
//}
//B 1 - Sum(uneven changes) - zeroEvenChanges
probSum = 1 - 0.5*(_gFuncStart1.gFunc_(BranchLength) - _gFuncStart1MinusR.gFunc_(BranchLength)) - _gFuncStart1.qFunc_2k(BranchLength,0);
return probSum/Pij_t(1,1,BranchLength);
}
MDOUBLE computeJumps::lossProbGiven10(MDOUBLE BranchLength){
MDOUBLE probSum = 1.0;
return probSum;
}
/********************************************************************************************
// mij(t) = E(N, end=j | start=i)
*********************************************************************************************/
MDOUBLE computeJumps::m01(MDOUBLE BranchLength){
return 0.5 *( _gFuncStart0.gFunc_dr(BranchLength) - _gFuncStart0MinusR.gFunc_dr(BranchLength));
}
MDOUBLE computeJumps::m00(MDOUBLE BranchLength){
return 0.5 *( _gFuncStart0.gFunc_dr(BranchLength) + _gFuncStart0MinusR.gFunc_dr(BranchLength));
}
MDOUBLE computeJumps::m11(MDOUBLE BranchLength){
return 0.5 *( _gFuncStart1.gFunc_dr(BranchLength) + _gFuncStart1MinusR.gFunc_dr(BranchLength));
}
MDOUBLE computeJumps::m10(MDOUBLE BranchLength){
return 0.5 *( _gFuncStart1.gFunc_dr(BranchLength) - _gFuncStart1MinusR.gFunc_dr(BranchLength));
}
/********************************************************************************************
gFunc_dr
*********************************************************************************************/
MDOUBLE computeJumps::gFunc_dr(MDOUBLE BranchLength, int startState){
// test:
if(startState == 0){
return _gFuncStart0.g1Func_dr(BranchLength) + _gFuncStart0.g2Func_dr(BranchLength);
}
if(startState == 1)
return _gFuncStart1.g1Func_dr(BranchLength) + _gFuncStart1.g2Func_dr(BranchLength);
else
return 0;
}
/********************************************************************************************
gFunc
*********************************************************************************************/
computeJumps::gFunc::gFunc(const MDOUBLE Lambda1, const MDOUBLE Lambda2 , const MDOUBLE r)
: _Lambda1(Lambda1), _Lambda2(Lambda2), _r(r)
{
_delta = sqrt((_Lambda1+_Lambda2)*(_Lambda1+_Lambda2) + 4*(_r*_r - 1)*_Lambda1*_Lambda2);
_delta_dr = (4*_r*_Lambda1*_Lambda2)/_delta;
_Alpha1 = 0.5*(-_Lambda1-_Lambda2 +_delta);
_Alpha2 = 0.5*(-_Lambda1-_Lambda2 -_delta);
_Alpha1_dr = 0.5*_delta_dr;
_Alpha2_dr = -0.5*_delta_dr;
_Alpha1_2 = _delta; //= _Alpha1 - _Alpha2;
_Alpha1_2_dr = _delta_dr; //= _Alpha1_dr - _Alpha2_dr;
_g1Part = ( (_r-1)*_Lambda1 - _Alpha2)/_Alpha1_2;
_g2Part = (-(_r-1)*_Lambda1 + _Alpha1)/_Alpha1_2;
_g1Part_dr = ( _Alpha1_2*( _Lambda1-_Alpha2_dr) - ( (_r-1)*_Lambda1 - _Alpha2)*_Alpha1_2_dr )/(_Alpha1_2*_Alpha1_2);
_g2Part_dr = ( _Alpha1_2*(-_Lambda1+_Alpha1_dr) - (-(_r-1)*_Lambda1 + _Alpha1)*_Alpha1_2_dr )/(_Alpha1_2*_Alpha1_2);
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::gFunc::gFunc_dr(MDOUBLE BranchLength){
return sign(_r)*(g1Func_dr(BranchLength) + g2Func_dr(BranchLength));
}
MDOUBLE computeJumps::gFunc::g1Func_dr(MDOUBLE BranchLength){
return _g1Part_dr*g1Exp(BranchLength) + _g1Part*g1Exp(BranchLength)*BranchLength*_Alpha1_dr;
}
MDOUBLE computeJumps::gFunc::g2Func_dr(MDOUBLE BranchLength){
return _g2Part_dr*g2Exp(BranchLength) + _g2Part*g2Exp(BranchLength)*BranchLength*_Alpha2_dr;
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE computeJumps::gFunc::g1Exp(MDOUBLE BranchLength){
return exp(_Alpha1*BranchLength);
}
MDOUBLE computeJumps::gFunc::g2Exp(MDOUBLE BranchLength){
return exp(_Alpha2*BranchLength);
}
MDOUBLE computeJumps::gFunc::gFunc_(MDOUBLE BranchLength){
return _g1Part*g1Exp(BranchLength) + _g2Part*g2Exp(BranchLength);
};
MDOUBLE computeJumps::gFunc::_A_(int k, int i){return BinomialCoeff((k+i-1),i) * pow(-1.0,i)*pow(_Lambda1,k)*pow(_Lambda2,(k-1)) / pow((_Lambda2-_Lambda1),(k+i)) ; }
MDOUBLE computeJumps::gFunc::_B_(int k, int i){return BinomialCoeff((k+i-1),i) * pow(-1.0,i)*pow(_Lambda1,k)*pow(_Lambda2,(k-1)) / pow((_Lambda1-_Lambda2),(k+i)) ; }
MDOUBLE computeJumps::gFunc::_C_(int k, int i){return BinomialCoeff((k+i-1),i) * pow(-1.0,i)*pow(_Lambda1,k)*pow(_Lambda2,(k)) / pow((_Lambda2-_Lambda1),(k+i)) ; }
MDOUBLE computeJumps::gFunc::_D_(int k, int i){return BinomialCoeff((k+i),i) * pow(-1.0,i)*pow(_Lambda1,k)*pow(_Lambda2,(k)) / pow((_Lambda1-_Lambda2),(k+i+1)); }
// prob for (2k-1) transitions (gains and losses), given start=0
MDOUBLE computeJumps::gFunc::qFunc_2k_1 (MDOUBLE BranchLength, int k){
MDOUBLE qSUM = 0.0;
for(int i=1; i<=k; ++i){
qSUM += _A_(k,(k-i))* pow(BranchLength,(i-1))/factorial(i-1) * exp(-_Lambda1*BranchLength)
+ _B_(k,(k-i))* pow(BranchLength,(i-1))/factorial(i-1) * exp(-_Lambda2*BranchLength);
}
return qSUM;
}
// prob for (2k) transitions (gains and losses), given start=0
MDOUBLE computeJumps::gFunc::qFunc_2k (MDOUBLE BranchLength, int k){
MDOUBLE qSUM = 0.0;
for(int i=1; i<=(k+1); ++i){
qSUM += _C_(k,(k-i+1))* pow(BranchLength,(i-1))/factorial(i-1)*exp(-_Lambda1*BranchLength);
}
for(int i=1; i<=k; ++i){
qSUM += _D_(k,(k-i))* pow(BranchLength,(i-1))/factorial(i-1)*exp(-_Lambda2*BranchLength);
}
return qSUM;
}
/********************************************************************************************
Pij_t - Based on Analytic solution
*********************************************************************************************/
MDOUBLE computeJumps::Pij_t(const int i,const int j, const MDOUBLE d) {
MDOUBLE gain = _Lambda1;
MDOUBLE loss = _Lambda2;
MDOUBLE eigenvalue = -(gain + loss);
VVdouble Pt;
int AlphaSize = 2;
resizeMatrix(Pt,AlphaSize,AlphaSize);
int caseNum = i + j*2;
switch (caseNum) {
case 0 : Pt[0][0] = loss/(-eigenvalue) + exp(eigenvalue*d)*(1 - loss/(-eigenvalue)); break;
case 1 : Pt[1][0] = loss/(-eigenvalue) - exp(eigenvalue*d)*(1 - gain/(-eigenvalue)); break;
case 2 : Pt[0][1] = gain/(-eigenvalue) - exp(eigenvalue*d)*(1 - loss/(-eigenvalue)); break;
case 3 : Pt[1][1] = gain/(-eigenvalue) + exp(eigenvalue*d)*(1 - gain/(-eigenvalue)); break;
}
MDOUBLE val = (Pt[i][j]);
return val;
}
|