1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
// $Id: distanceBasedSeqs2Tree.cpp 6002 2009-03-20 19:39:03Z privmane $
#include "distanceBasedSeqs2Tree.h"
#include "uniDistribution.h"
#include "distanceTable.h"
#include "bestAlpha.h"
#include "siteSpecificRate.h"
#include "someUtil.h"
#include "bblEM.h"
#include "tamura92.h"
#include "bestTamura92param.h"
#include "bestGtrModelParams.h"
#include <float.h>
#include "replacementModelSSRV.h"
#include "trivialAccelerator.h"
// **********************************************************************
// *** The basic non-iterative versions *********************************
// **********************************************************************
tree distanceBasedSeqs2Tree::seqs2Tree(const sequenceContainer &sc, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_weights = weights;
// Calculate distance table
tree et;
VVdouble distTable;
vector<string> vNames;
giveDistanceTable(_distM,sc,distTable,vNames,_weights);
// Build tree from the distance table
et = _dist2et->computeTree(distTable, vNames, _constraintTreePtr);
LOG(6,<<"# distanceBasedSeqs2Tree::seqs2Tree: The reconsructed tree:"<<endl);
LOGDO(6,et.output(myLog::LogFile()));
return et;
}
tree distanceBasedSeqs2Tree::seqs2TreeBootstrap(const sequenceContainer &sc, const Vdouble *weights, const tree* constraintTreePtr) {
return seqs2Tree(sc, weights, constraintTreePtr);
}
// **********************************************************************
// *** iterativeDistanceSeqs2Tree ***************************************
// **********************************************************************
iterativeDistanceSeqs2Tree::iterativeDistanceSeqs2Tree(likeDist &distM, distances2Tree &dist2et, const Vdouble *weights,
const MDOUBLE epsilonLikelihoodImprovement,
const MDOUBLE epsilonLikelihoodImprovement4alphaOptimiz,
const MDOUBLE epsilonLikelihoodImprovement4BBL,
const int maxIterationsBBL)
: distanceBasedSeqs2Tree(distM, dist2et, weights),
_epsilonLikelihoodImprovement ( epsilonLikelihoodImprovement ),
_epsilonLikelihoodImprovement4alphaOptimiz( epsilonLikelihoodImprovement4alphaOptimiz),
_epsilonLikelihoodImprovement4BBL ( epsilonLikelihoodImprovement4BBL ),
_maxIterationsBBL ( maxIterationsBBL )
{
// Check that the stochasticProcess in likeDist is not const
if (distM.isTheInternalStochasticProcessConst()) {
errorMsg::reportError("iterativeDistanceSeqs2Tree::iterativeDistanceSeqs2Tree: The stochasticProcess in the given likeDist object is const. A non-const stochasticProcess is required.");
}
// Keep a pointer to the stochasticProcess in distM, so that we will be able to change its alpha, etc.
_spPtr = &(distM.getNonConstStochasticProcess());
if (_spPtr->categories() >1)
_alpha = (static_cast<gammaDistribution*>(_spPtr->distr()))->getAlpha();
else
_alpha=-99.9; // this should never be used
}
// *** Iterative tree building ******************************************
tree iterativeDistanceSeqs2Tree::seqs2TreeIterativeInternal(const sequenceContainer &sc, bool initSideInfoGiven) {
LOGDO(3,printTime(myLog::LogFile()));
LOG(3,<<"# iterativeDistanceSeqs2Tree::seqs2TreeIterativeInternal:"<<endl<<"# Initial tree:"<<endl);
seqs2TreeOneIterationInternal(sc, initSideInfoGiven);
return seqs2TreeIterativeInternalInitTreeGiven(sc, true, _newTree, _newAlpha);
}
// *** Iterative tree building, given an initial tree and alpha *********
// *** Optimize branch lengths and sideInfo for the given tree topology
tree iterativeDistanceSeqs2Tree::seqs2TreeIterativeInternalInitTreeGiven(const sequenceContainer &sc, const tree &initTree) {
LOG(7,<<"# iterativeDistanceSeqs2Tree::seqs2TreeIterativeInternalInitTreeGiven: Started optimizeSideInfo. ");
LOGDO(7,printTime(myLog::LogFile()));
_newTree=initTree;
_newTreeLogLikelihood=optimizeSideInfo(sc, _newTree);
LOG(7,<<"# iterativeDistanceSeqs2Tree::seqs2TreeIterativeInternalInitTreeGiven: Finished optimizeSideInfo. ");
LOGDO(7,printTime(myLog::LogFile()));
return seqs2TreeIterativeInternalInitTreeGiven(sc, true, _newTree, _newAlpha);
}
// *** Iterative tree building, given an initial tree and alpha *********
// *** If sideInfo is not given - calculate it for the fixed tree and alpha
tree iterativeDistanceSeqs2Tree::seqs2TreeIterativeInternalInitTreeGiven(const sequenceContainer &sc, bool initSideInfoGiven, const tree &initTree, MDOUBLE initAlpha) {
_newTree=initTree;
_newAlpha=initAlpha;
LOGDO(3,printTime(myLog::LogFile()));
LOG(3,<<"# iterativeDistanceSeqs2Tree::seqs2TreeIterativeInternalInitTreeGiven"<<endl);
if (!initSideInfoGiven) {
_newTreeLogLikelihood=calcSideInfoGivenTreeAndAlpha(sc, initTree, initAlpha);
}
int iterationNum = 0;
LOGDO(3,printTime(myLog::LogFile()));
LOG(3,<<"# iterativeDistanceSeqs2Tree::seqs2TreeIterativeInternalInitTreeGiven:"<<endl<<"# The given initial tree:"<<endl);
LOGDO(3,_newTree.output(myLog::LogFile()));
do {
++iterationNum;
LOGDO(5,printTime(myLog::LogFile()));
LOG(3,<<"# Iteration "<<iterationNum<<":"<<endl);
// save the best tree so far, and its likelihood and the sideInfo that was calculated for it
_et=_newTree;
_treeLogLikelihood=_newTreeLogLikelihood;
acceptSideInfo();
LOG(7,<<"# Side info for the tree"<<endl);
LOGDO(7,printSideInfo(myLog::LogFile()));
seqs2TreeOneIterationInternal(sc, true);
} while (_newTreeLogLikelihood > _treeLogLikelihood + _epsilonLikelihoodImprovement);
LOGDO(3,printTime(myLog::LogFile()));
LOG(3,<<"# iterativeDistanceSeqs2Tree::seqs2TreeIterativeInternalInitTreeGiven:"<<endl<<"# Finished iterative distance-based tree reconstruction, done "<<iterationNum<<" iterations"<<endl);
return _et;
}
// *** Tree building procedure that is called iteratively **********************
void iterativeDistanceSeqs2Tree::seqs2TreeOneIterationInternal(const sequenceContainer &sc, const bool sideInfoSet) {
// 1. Calculate distance table
VVdouble distTable;
vector<string> vNames;
LOG(7,<<"# iterativeDistanceSeqs2Tree::seqs2TreeOneIterationInternal: Started giveDistanceTable. ");
LOGDO(7,printTime(myLog::LogFile()));
if (!sideInfoSet) { // Then use homogeneous rates
// Create homogeneous likeDist
_alpha = 1.5; // Since no ASRV side info is known yet, we set an initial alpha for bestAlphaAndBBL optimizations
uniDistribution distribution;
stochasticProcess* uniDistSp = NULL;
replacementModelSSRV* rmSSRV =
dynamic_cast<replacementModelSSRV*>(_spPtr->getPijAccelerator()->getReplacementModel());
if (!rmSSRV) {
uniDistSp = new stochasticProcess(&distribution, _spPtr->getPijAccelerator());
} else {
trivialAccelerator pijAcc(rmSSRV->getBaseRM());
uniDistSp = new stochasticProcess(&distribution, &pijAcc);
}
likeDist homogeneousDist(*uniDistSp,static_cast<likeDist*>(_distM)->getToll());
giveDistanceTable(&homogeneousDist,sc,distTable,vNames,_weights);
delete uniDistSp;
} else { // use the side information
utilizeSideInfo();
giveDistanceTable(_distM,sc,distTable,vNames,_weights);
}
LOG(7,<<"# iterativeDistanceSeqs2Tree::seqs2TreeOneIterationInternal: Finished giveDistanceTable, started distances2Tree::computeTree. ");
LOGDO(7,printTime(myLog::LogFile()));
// 2. Build tree from the distance table
_newTree = _dist2et->computeTree(distTable, vNames, _constraintTreePtr);
LOG(7,<<"# iterativeDistanceSeqs2Tree::seqs2TreeOneIterationInternal: Finished distances2Tree::computeTree, started optimizeSideInfo. ");
LOGDO(7,printTime(myLog::LogFile()));
// 3. Optimize branch lengths and side info for the tree topology
_newTreeLogLikelihood=optimizeSideInfo(sc, _newTree);
LOG(7,<<"# iterativeDistanceSeqs2Tree::seqs2TreeOneIterationInternal: Finished distances2Tree::optimizeSideInfo. ");
LOGDO(7,printTime(myLog::LogFile()));
if (!sideInfoSet) {
LOG(5,<<"# iterativeDistanceSeqs2Tree::seqs2TreeOneIterationInternal:"<<endl<<"# Homogeneous rates tree"<<endl);
} else {
LOG(5,<<"# iterativeDistanceSeqs2Tree::seqs2TreeOneIterationInternal:"<<endl<<"# Tree based on alpha"<<endl);
}
LOGDO(5,_newTree.output(myLog::LogFile()));
LOG(5,<<"# Log likelihood:"<<endl<<_newTreeLogLikelihood<<endl);
}
// Perform one bootstrap iteration, assuming that side info has been set (as if acceptSideInfo has been called)
tree iterativeDistanceSeqs2Tree::seqs2TreeBootstrap(const sequenceContainer &sc, const Vdouble *weights, const tree* constraintTreePtr) {
LOG(3,<<"# iterativeDistanceSeqs2Tree::seqs2TreeBootstrap: Started a single bootstrap iteration. ");
LOGDO(3,printTime(myLog::LogFile()));
_constraintTreePtr=constraintTreePtr;
_weights = weights;
// Calculate distance table
tree localScopeEt;
VVdouble distTable;
vector<string> vNames;
utilizeSideInfo();
giveDistanceTable(_distM,sc,distTable,vNames,_weights);
// Build tree from the distance table
localScopeEt = _dist2et->computeTree(distTable,vNames, _constraintTreePtr);
LOG(3,<<"# iterativeDistanceSeqs2Tree::seqs2TreeBootstrapInternal:"<<endl<<"# Bootstrap tree based on alpha, without optimizations"<<endl);
LOGDO(3,localScopeEt.output(myLog::LogFile()));
return localScopeEt;
}
/********************************
* commonAlphaDistanceSeqs2Tree *
********************************/
tree commonAlphaDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, MDOUBLE initAlpha, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_alpha = initAlpha;
_weights = weights;
return seqs2TreeIterativeInternal(sc, true);
}
tree commonAlphaDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_weights = weights;
return seqs2TreeIterativeInternal(sc, false);
}
tree commonAlphaDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const tree &initTree, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_weights = weights;
return seqs2TreeIterativeInternalInitTreeGiven(sc, initTree);
}
tree commonAlphaDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const tree &initTree, MDOUBLE initAlpha, const Vdouble *weights, const tree* constraintTreePtr) {
_alpha = initAlpha;
_weights = weights;
_constraintTreePtr=constraintTreePtr;
return seqs2TreeIterativeInternalInitTreeGiven(sc, true, initTree, initAlpha);
}
// NOTE! This version is a NON-ITERATIVE version that uses the side info supplied by the user
tree commonAlphaDistanceSeqs2Tree::seqs2Tree(const sequenceContainer &sc, MDOUBLE alpha, const Vdouble *weights, const tree* constraintTreePtr) {
_weights = weights;
_alpha = alpha;
_constraintTreePtr=constraintTreePtr;
seqs2TreeOneIterationInternal(sc, true);
return _newTree;
}
tree commonAlphaDistanceSeqs2Tree::seqs2TreeBootstrap(const sequenceContainer &sc, const MDOUBLE alpha, const Vdouble *weights, const tree* constraintTreePtr) {
_weights = weights;
_alpha = alpha;
return static_cast<iterativeDistanceSeqs2Tree *>(this)->seqs2TreeBootstrap(sc, weights, constraintTreePtr);
}
// NOTE! This version calls ITERATIVE seqs2Tree because side info is not given by the user, so we have to generate and optimize it
tree commonAlphaDistanceSeqs2Tree::seqs2Tree(const sequenceContainer &sc, const Vdouble *weights, const tree* constraintTreePtr) {
return seqs2TreeIterative(sc,weights,constraintTreePtr);
}
MDOUBLE commonAlphaDistanceSeqs2Tree::optimizeSideInfo(const sequenceContainer &sc, tree &et)
{
if (dynamic_cast<tamura92*>(_spPtr->getPijAccelerator()->getReplacementModel())) {
// Optimizing params of the tamura92 model
bestTamura92ParamAlphaAndBBL optimizer(et, sc, *_spPtr, _weights, 5, _epsilonLikelihoodImprovement/*0.05*/,
_epsilonLikelihoodImprovement4alphaOptimiz/*0.01*/,
_epsilonLikelihoodImprovement4alphaOptimiz/*0.01*/,
_epsilonLikelihoodImprovement4alphaOptimiz/*0.01*/,
_epsilonLikelihoodImprovement4BBL/*0.01*/,
5.0, _maxIterationsBBL, _alpha, 5.0 );
_newAlpha=optimizer.getBestAlpha();
return(optimizer.getBestL());
} else if (dynamic_cast<gtrModel*>(_spPtr->getPijAccelerator()->getReplacementModel())) {
// Optimizing params of the gtr model
bestGtrModel optimizer(et, sc, *_spPtr, _weights, 5,
_epsilonLikelihoodImprovement,
_epsilonLikelihoodImprovement4alphaOptimiz,
true, true);
_newAlpha=optimizer.getBestAlpha();
return(optimizer.getBestL());
} else {
bestAlphaAndBBL optimizer(et, sc, *_spPtr, _weights, _alpha, 5.0,
_epsilonLikelihoodImprovement4BBL/*0.01*/, _epsilonLikelihoodImprovement4alphaOptimiz,
_maxIterationsBBL);
_newAlpha=optimizer.getBestAlpha();
return(optimizer.getBestL());
}
}
MDOUBLE commonAlphaDistanceSeqs2Tree::calcSideInfoGivenTreeAndAlpha(const sequenceContainer &sc, const tree &et, MDOUBLE alpha)
{
_newAlpha = alpha;
(static_cast<gammaDistribution*>(_spPtr->distr()))->setAlpha(alpha);
return likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(et, sc, *_spPtr, _weights);
}
void commonAlphaDistanceSeqs2Tree::acceptSideInfo()
{
_alpha = _newAlpha;
}
void commonAlphaDistanceSeqs2Tree::utilizeSideInfo()
{
// set new alpha value in the sp that is used in _distM
(static_cast<gammaDistribution*>(_spPtr->distr()))->setAlpha(_alpha);
LOG(10,<<"# utilizing alpha"<<endl<<_alpha<<endl<<endl);
}
void commonAlphaDistanceSeqs2Tree::printSideInfo(ostream& out) const
{
out<<"Alpha: "<<_alpha<<endl;
}
// non virtual
void commonAlphaDistanceSeqs2Tree::setSideInfo(const MDOUBLE alpha)
{
_alpha=alpha;
}
MDOUBLE commonAlphaDistanceSeqs2Tree::getSideInfo() const
{
return _alpha;
}
/******************************
* rate4siteDistanceSeqs2Tree *
******************************/
tree rate4siteDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const Vdouble &initRates, const Vdouble *weights, const tree* constraintTreePtr) {
_rates = initRates;
_constraintTreePtr=constraintTreePtr;
_weights = weights;
return seqs2TreeIterativeInternal(sc, true);
}
tree rate4siteDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_weights = weights;
return seqs2TreeIterativeInternal(sc, false);
}
tree rate4siteDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const tree &initTree, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_weights = weights;
return seqs2TreeIterativeInternalInitTreeGiven(sc, initTree);
}
tree rate4siteDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const tree &initTree, MDOUBLE initAlpha, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_weights = weights;
return seqs2TreeIterativeInternalInitTreeGiven(sc, false, initTree, initAlpha);
}
// NOTE! This version is a NON-ITERATIVE version that uses the side info supplied by the user
tree rate4siteDistanceSeqs2Tree::seqs2Tree(const sequenceContainer &sc, const Vdouble &rates, const Vdouble *weights, const tree* constraintTreePtr) {
_weights = weights;
_rates = rates;
_constraintTreePtr=constraintTreePtr;
seqs2TreeOneIterationInternal(sc, true);
return _newTree;
}
tree rate4siteDistanceSeqs2Tree::seqs2TreeBootstrap(const sequenceContainer &sc, const Vdouble &rates, const Vdouble *weights, const tree* constraintTreePtr) {
_weights = weights;
_rates = rates;
return static_cast<iterativeDistanceSeqs2Tree *>(this)->seqs2TreeBootstrap(sc, weights, constraintTreePtr);
}
// NOTE! This version calls ITERATIVE seqs2Tree because side info is not given by the user, so we have to generate and optimize it
tree rate4siteDistanceSeqs2Tree::seqs2Tree(const sequenceContainer &sc, const Vdouble *weights, const tree* constraintTreePtr) {
return seqs2TreeIterative(sc,weights,constraintTreePtr);
}
MDOUBLE rate4siteDistanceSeqs2Tree::optimizeSideInfo(const sequenceContainer &sc, tree &et)
{
bblEM optimizer(et, sc, *_spPtr, _weights, _maxIterationsBBL, _epsilonLikelihoodImprovement4BBL);
// Note: this verstion of ML rates computation can only use a uniDistribution stochasticProcess
Vdouble likelihoods;
MDOUBLE treeLogLikelihood = computeML_siteSpecificRate(_newRates, likelihoods, sc, *_spPtr, et,20,_epsilonLikelihoodImprovement);
//computeEB_EXP_siteSpecificRate
return(treeLogLikelihood);
}
MDOUBLE rate4siteDistanceSeqs2Tree::calcSideInfoGivenTreeAndAlpha(const sequenceContainer &sc, const tree &et, MDOUBLE alpha)
{
_newAlpha = alpha;
Vdouble likelihoods;
MDOUBLE treeLogLikelihood = computeML_siteSpecificRate(_newRates, likelihoods, sc, *_spPtr, et,20,_epsilonLikelihoodImprovement);
//computeEB_EXP_siteSpecificRate
return(treeLogLikelihood);
}
void rate4siteDistanceSeqs2Tree::acceptSideInfo()
{
_alpha = _newAlpha;
_rates = _newRates;
}
void rate4siteDistanceSeqs2Tree::utilizeSideInfo()
{
(static_cast<givenRatesMLDistance*>(_distM))->setRates(_rates);
LOG(10,<<"# utilizing rates"<<endl<<_rates<<endl<<endl);
// set new alpha value in the sp that is used in _distM
// (static_cast<gammaDistribution*>(_spPtr->distr()))->setAlpha(_alpha);
}
void rate4siteDistanceSeqs2Tree::printSideInfo(ostream& out) const
{
if (_rates.size())
out<<"ML rates: "<<_rates<<endl;
}
// non virtual
void rate4siteDistanceSeqs2Tree::setSideInfo(const Vdouble &rates)
{
_rates = rates;
}
const Vdouble& rate4siteDistanceSeqs2Tree::getSideInfo() const
{
return _rates;
}
/******************************
* posteriorDistanceSeqs2Tree *
********************************/
tree posteriorDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, MDOUBLE initAlpha, const VVdoubleRep &initPosterior, const Vdouble *weights, const tree* constraintTreePtr) {
_alpha = initAlpha;
_posterior = initPosterior;
_weights = weights;
_constraintTreePtr=constraintTreePtr;
return seqs2TreeIterativeInternal(sc, true);
}
tree posteriorDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_weights = weights;
return seqs2TreeIterativeInternal(sc, false);
}
tree posteriorDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const tree &initTree, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_weights = weights;
return seqs2TreeIterativeInternalInitTreeGiven(sc, initTree);
}
tree posteriorDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const tree &initTree, MDOUBLE initAlpha, const Vdouble *weights, const tree* constraintTreePtr) {
_constraintTreePtr=constraintTreePtr;
_weights = weights;
return seqs2TreeIterativeInternalInitTreeGiven(sc, false, initTree, initAlpha);
}
tree posteriorDistanceSeqs2Tree::seqs2TreeIterative(const sequenceContainer &sc, const tree &initTree, MDOUBLE initAlpha, const VVdoubleRep &initPosterior, const Vdouble *weights, const tree* constraintTreePtr) {
_alpha = initAlpha;
_posterior = initPosterior;
_weights = weights;
_constraintTreePtr=constraintTreePtr;
return seqs2TreeIterativeInternalInitTreeGiven(sc, true, initTree, initAlpha);
}
// NOTE! This version is a NON-ITERATIVE version that uses the side info supplied by the user
tree posteriorDistanceSeqs2Tree::seqs2Tree(const sequenceContainer &sc, const VVdoubleRep &posterior, const Vdouble *weights, const tree* constraintTreePtr) {
_weights = weights;
_posterior = posterior;
_constraintTreePtr=constraintTreePtr;
seqs2TreeOneIterationInternal(sc, true);
return _newTree;
}
tree posteriorDistanceSeqs2Tree::seqs2TreeBootstrap(const sequenceContainer &sc, const VVdoubleRep &posterior, const Vdouble *weights, const tree* constraintTreePtr) {
_weights = weights;
_posterior = posterior;
return static_cast<iterativeDistanceSeqs2Tree *>(this)->seqs2TreeBootstrap(sc, weights, constraintTreePtr);
}
// NOTE! This version calls ITERATIVE seqs2Tree because side info is not given by the user, so we have to generate and optimize it
tree posteriorDistanceSeqs2Tree::seqs2Tree(const sequenceContainer &sc, const Vdouble *weights, const tree* constraintTreePtr) {
return seqs2TreeIterative(sc, weights, constraintTreePtr);
}
MDOUBLE posteriorDistanceSeqs2Tree::optimizeSideInfo(const sequenceContainer &sc, tree &et)
{
if (dynamic_cast<tamura92*>(_spPtr->getPijAccelerator()->getReplacementModel())) {
// Optimizing params of the tamura92 model
bestTamura92ParamAlphaAndBBL optimizer(et, sc, *_spPtr, _weights, 5, _epsilonLikelihoodImprovement/*0.05*/,
_epsilonLikelihoodImprovement4alphaOptimiz/*0.01*/,
_epsilonLikelihoodImprovement4alphaOptimiz/*0.01*/,
_epsilonLikelihoodImprovement4alphaOptimiz/*0.01*/,
_epsilonLikelihoodImprovement4BBL/*0.01*/,
5.0, _maxIterationsBBL, _alpha, 5.0 );
_newAlpha=optimizer.getBestAlpha();
return(optimizer.getBestL());
} else if (dynamic_cast<gtrModel*>(_spPtr->getPijAccelerator()->getReplacementModel())) {
// Optimizing params of the gtr model
bestGtrModel optimizer(et, sc, *_spPtr, _weights, 5,
_epsilonLikelihoodImprovement,
_epsilonLikelihoodImprovement4alphaOptimiz,
true, true);
_newAlpha=optimizer.getBestAlpha();
return(optimizer.getBestL());
} else {
bestAlphaAndBBL optimizer(et, sc, *_spPtr, _weights, _alpha, 5.0,
_epsilonLikelihoodImprovement4BBL/*0.01*/, _epsilonLikelihoodImprovement4alphaOptimiz,
_maxIterationsBBL);
_newAlpha=optimizer.getBestAlpha(); // cached only to make alpha optimization faster
}
// Compute posterior probabilities of rates per site
return likelihoodComputation::getPosteriorOfRates(et, sc, *_spPtr, _newPosterior);
}
MDOUBLE posteriorDistanceSeqs2Tree::calcSideInfoGivenTreeAndAlpha(const sequenceContainer &sc, const tree &et, MDOUBLE alpha)
{
_newAlpha = alpha;
(static_cast<gammaDistribution*>(_spPtr->distr()))->setAlpha(alpha);
// Compute posterior probabilities of rates per site
return likelihoodComputation::getPosteriorOfRates(et, sc, *_spPtr, _newPosterior);
}
void posteriorDistanceSeqs2Tree::acceptSideInfo()
{
_alpha = _newAlpha;
_posterior = _newPosterior;
}
void posteriorDistanceSeqs2Tree::utilizeSideInfo()
{
(static_cast<posteriorDistance*>(_distM))->setPosterior(_posterior);
LOG(10,<<"# utilizing posterior"<<endl<<_posterior<<endl<<endl);
// set new alpha value in the sp that is used in _distM
// (static_cast<gammaDistribution*>(_spPtr->distr()))->setAlpha(_alpha);
}
void posteriorDistanceSeqs2Tree::printSideInfo(ostream& out) const
{
if (_posterior.size())
out<<_posterior<<endl;
}
// non virtual
void posteriorDistanceSeqs2Tree::setSideInfo(const VVdoubleRep &posterior)
{
_posterior = posterior;
}
const VVdoubleRep& posteriorDistanceSeqs2Tree::getSideInfo() const
{
return _posterior;
}
|