File: fromQtoPt.cpp

package info (click to toggle)
fastml 3.11-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,772 kB
  • sloc: cpp: 48,522; perl: 3,588; ansic: 819; makefile: 386; python: 83; sh: 55
file content (303 lines) | stat: -rw-r--r-- 9,564 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// $Id: fromQtoPt.cpp 5788 2009-01-19 22:24:16Z rubi $

#include "definitions.h"
#include "fromQtoPt.h"
#include "errorMsg.h"
#include "numRec.h"
#include "matrixUtils.h"
#include <iostream>
using namespace std;
#include <cassert>

//#define VERBOS




void q2pt::fillFromRateMatrix(const vector<MDOUBLE>& freq,
		   const VVdouble & qMatrix) {
	   // we first decompose Q to (F^0.5) M (F^-0.5)
	   // F is a diagonal matrix of the frequencies
	   // M is the symetrical matrix representation of Q.
	
	VVdouble q_sym;
	const int matrix_size = qMatrix.size();
	q_sym.resize(matrix_size);
	int k=0;
	for (k=0; k < q_sym.size(); ++k) q_sym[k].resize(matrix_size);
	calc_symmetric_q(qMatrix,q_sym,freq);
	// now we have to find the eigen-vector decomposition of the q_sym.
	VVdouble v; // v is the eigen vectors of the symetrical matrix.
	v.resize(matrix_size);
	for (k=0; k < qMatrix.size(); ++k) v[k].resize(matrix_size);
	Vdouble eigenValues(matrix_size);
	
	// symmetric_1pam = [v] [eigenValues] [transpose(v)]
	//MyJacobi(q_sym,v, eigenValues); // notice that inv([v]) = [v] transpose;
	

	/////i changed
	computeEigenSystem(q_sym,v,eigenValues);

	////
//#ifdef VERBOS
//	LOG(5,<<"The eigen-vector matrix of the decomposition of the symetric matrix\n");
//	for (int k1=0; k1 < v.size(); ++k1) {
//		for (int k2=0; k2<v[k1].size(); ++k2) {
//			LOG(5,<<v[k1][k2]<<" ");
//		}
//		LOG(5,<<endl);
//	}
//#endif 


	VVdouble left_eig_of_pam; // v is the eigen vectors of the symetrical matrix.
	left_eig_of_pam.resize(matrix_size);
	for (k=0; k < left_eig_of_pam.size(); ++k) left_eig_of_pam[k].resize(matrix_size);
	VVdouble right_eig_of_pam; // v is the eigen vectors of the symetrical matrix.
	right_eig_of_pam.resize(matrix_size);
	for (k=0; k < right_eig_of_pam.size(); ++k) right_eig_of_pam[k].resize(matrix_size);

	calc_left_and_right_eig_of_pam(left_eig_of_pam,right_eig_of_pam,v,freq);
	
	_leftEigen=left_eig_of_pam;
	_rightEigen=right_eig_of_pam;
	_eigenVector=eigenValues;
	Vdouble _freq=freq;
	// printing a pij(1);
	//MDOUBLE t = 1;
	//string fileName = "D://My Documents//adid//nimrod//inputs//inputs//aligned tce//aligned tce//P.F//P.F. vs P.F//eigenValues1.txt";
//	ofstream out(fileName.c_str());
//	for (int i=0;i<eigenValues.size();i++)
//		out<<eigenValues[i] <<" ";
//	out<<endl;
	//for (int aa1=0; aa1 < eigenValues.size(); ++aa1) {
	//	for (int aa2=0; aa2 < eigenValues.size(); ++aa2) {
	///		MDOUBLE sum=0;
	//		for (int k=0 ; k<eigenValues.size() ; ++k) {
	//			sum+=( left_eig_of_pam[aa1][k]*right_eig_of_pam[k][aa2]*exp(eigenValues[k]*t) );
	//		}
	//		LOG(5,<<sum<<" ");
//		}
//		LOG(5,<<endl);
//	}
}

void q2pt::fillFrom1PAMMatrix(const vector<MDOUBLE>& freq,const VVdouble & onePam)
{
	fillFromRateMatrix(freq,onePam);
	for (int i=0; i < 	_eigenVector.size(); ++i) {
		assert(_eigenVector[i]>0);
		_eigenVector[i] = log(_eigenVector[i])* 100;
	}
}

bool q2pt::currectFloatingPointProblems(MDOUBLE& sum) const {
	if ((sum * (sum+err_allow_for_pijt_function))<0) sum=0;
	if (((sum-1) * (sum-1.0-err_allow_for_pijt_function))<0) sum=1;
	if (!((sum<=1) && (sum>=0))) 
		return false;
	return true;
}

// Pij(t) = Sigma[k]{ [V]ik * [V^-1]kj * e^(Lamda_k*t) }
const MDOUBLE q2pt::Pij_t(const int i, const int j, const MDOUBLE t) const {
	if (t<0) errorMsg::reportError("negative length in routine Pij_t");
//	if ((_freq[i] == 0.0) || (_freq[j] == 0.0)) return 0.0;
	MDOUBLE sum=0;
	for (int k=0 ; k<_eigenVector.size() ; ++k) {
		sum+=( _leftEigen[i][k]*_rightEigen[k][j]*exp(_eigenVector[k]*t) );
	}
	if (currectFloatingPointProblems(sum)) return sum; 
//	LOG(1,<<"err Pij_t i="<<i<<" j= "<<j<<" dis= "<<t<<" res= "<<sum<<endl);//sum is not in [0,1]
	errorMsg::reportError("q2pt::Pij_t error in function pijt... ");return 0;
}

const MDOUBLE q2pt::dPij_dt(const int i,const  int j, const MDOUBLE t) const {
	MDOUBLE sum=0;
	for (int k=0 ; k<_eigenVector.size() ; ++k) {
		sum+=( _leftEigen[i][k]*_rightEigen[k][j]*exp(_eigenVector[k]*t)*_eigenVector[k]);
	}
	return sum;
}


const MDOUBLE q2pt::d2Pij_dt2(const int i,const int j, const MDOUBLE t) const {
	MDOUBLE sum=0;;
	for (int k=0 ; k<_eigenVector.size() ; ++k) {
		sum+=( _leftEigen[i][k]*_rightEigen[k][j]*exp(_eigenVector[k]*t)*_eigenVector[k]*_eigenVector[k]);
	}
	return sum;
}

void q2pt::calc_symmetric_q(const VVdouble &q_matrix,
							VVdouble &symmetric_q,
							const Vdouble & freq)
//----------------------------------------------------------------------------------
//input:	symmetric_1pam matrix is the output, pam1 is the input
//output:	non
//doing:	procedures to find eigen values work on symetrical matrices.
//			dayhoff 1 pam in a new basis is symetrical
//			the transformation is
//			
//			(1)  [symmetric_1pam] = [sqrt(pi)] * [pam1] * [1/sqrt(pi)]
//
//			[] for matrix. [sqrt(pi)] is a diagonal matrix were a[i][i] is the root of freq[i]
//reference: JME (1997) 45:696-703 Estimation of reversible substitution matrices from
//			 multiple pairs of sequences. Lars Arvestad and William J. Bruno.
//----------------------------------------------------------------------------------
{	
	int i,j;
	for (i=0; i<q_matrix.size(); ++i) {
		for (j=0; j<q_matrix.size(); ++j) {
			if (q_matrix[i][j] != 0.0) {
				 symmetric_q[i][j] = q_matrix[i][j]*sqrt(freq[i])/sqrt(freq[j]);
			}
		}
	}
	/*check OZ
		LOG(5,<<"sim matrix"<<endl);
		for (i=0;i<symmetric_q.size();++i) {
			for (j=0; j<symmetric_q.size(); ++j) {
				//LOG(5,<<symmetric_q[i][j]<<" ");
				LOG(5,<< setprecision(3) <<  setw(5) << symmetric_q[i][j]<<'\t');
				
			}
			LOG(5,<<endl);
			} */

}

void q2pt::calc_left_and_right_eig_of_pam(
		VVdouble &left_eig_of_pam,
		VVdouble &right_eig_of_pam,
		const VVdouble &v,
		const Vdouble& freq) {
//----------------------------------------------------------------------------------
//input:	left_eig_of_pam, right_eig_of_pam they will be the eigenvectors of pam1;	
//			freq is the vector of amino acid frequencies of the model.
//			v is the eigen vector matrix of the symetrical matrix
//output:	non
//doing:	now [SYM]  = [SqrtFreq] * [pam1] * inv([SqrtFreq])
//			so [pam1] = inv([SqrtFreq]) * [SYM] * [SqrtFreq]
//			SYM		  = [V] * [D] * transp([V])
//			hence [pam1] = {inv([SqrtFreq]) * [V]} * [D] * {transp([V]) * [SqrtFreq]}
//			{inv([SqrtFreq]) * [V]} is left_eig_of_pam, and the above one ^ is right.
//----------------------------------------------------------------------------------
	int i,j;
	for (i=0;i<v.size();++i) {
		for (j=0;j<v.size();++j)
		{
			if ((freq[i] != 0.0) &&(freq[j] != 0.0)) {
				left_eig_of_pam[i][j] =  (1/sqrt(freq[i]))* v[i][j];
				right_eig_of_pam[i][j]= sqrt(freq[j]) * v[j][i];
			}
		}
	}

//	LOG(5,<<"left_eig_of_pam"<<endl);
//	for (i=0;i<4;++i) {
//		for (j=0; j<4; ++j) {
//			LOG(5,<<left_eig_of_pam[i][j]<<" ");
//			LOG(5,<<pam1[i][i]<<" ");
//		}
//		LOG(5,<<endl);
//	}
//
//	LOG(5,<<"right eig_of_pam"<<endl);
//	for (i=0;i<4;++i) {
//		for (j=0; j<4; ++j) {
//			LOG(5,<<right_eig_of_pam[i][j]<<" ");
//			LOG(5,<<pam1[i][i]<<" ");
//		}
//		LOG(5,<<endl);
//	}
//
//	LOG(5,<<"press anykey"<<endl);
//	char lll;
//	cin>>lll;


}

VVdouble get1PamFromCountMatrix(const vector<MDOUBLE>& freq,
		   const VVdouble & sub_matrix){
//----------------------------------------------------------------------------------
//input:		pam1 : a pointer to the matrix where pam1 will be.
//				sub_matrix: the substitution matrix
//				freq vector: the amino acid's frequenceis.
//output:		non
//doing:		fill in 1 pam from sub matrix and freq vector
//calculation:  sub_matrix[a][b] is the substitution matrix, between a and b
//				(sub_matrix[a][b]=sub_matrix[b][a])
//				we use f[a][b] insted of sub_matrix[a][b] to be the same as the book
//(reference)	"introduction to computational molecular biology by setubal and meidanis pg 80;
//				let f[a] be sigma f[a][b] on all b (we made f[a][a] = 0;)
//				i.e. f[a] is the number of mutation from a observed
//				let f be sigma f[a] on all a; (=the total mutations*2)
//				now, the mutaibility of a is defined as 
//
//				(1)	m[a] = f[a] / (100*f*freq[a])
//
//				100*f is a scaling factor for 1 pam.
//				then pam1[a][b] will be pr(a->b/a changed) * pr(a changed)
//				
//				(2) pam1[a][b] = (f[a][b]/f[a])*m[a]
//
//				(3) f[a][a] = 1-m[a] (easy to show)
//
//				notice that sigma 1pam[a][b] over all b is 1 and that
//				sigma freq[a]*1pam[a][a] over all a is 0.99
//----------------------------------------------------------------------------------
	const int _alphabetSize=sub_matrix.size();
	VVdouble pam1;
	pam1.resize(_alphabetSize);
	for (int z=0; z < _alphabetSize; ++z) {
		pam1[z].resize(_alphabetSize,0);
	}

	int i,j;//indices
	MDOUBLE total=0;			// i.e.f in the above explanation
	for (i=0;i<_alphabetSize;++i) {
		for (j=0; j<_alphabetSize; ++j){
			total+=sub_matrix[i][j];
		}
	}
	
	MDOUBLE tmsum;
	for (i=0;i<_alphabetSize;++i) {
		tmsum = 0.0;
		for (j=i+1; j<_alphabetSize; ++j){
			if ((freq[i] == 0.0) || (freq[j] == 0.0)) {
				pam1[i][j] = 0.0;pam1[j][i] = 0.0;
			} else {
				pam1[i][j] = sub_matrix[i][j]/(100.0*total*freq[i]);
				pam1[j][i] = sub_matrix[i][j]/(100.0*total*freq[j]);
			}
		}
	}

	for (i=0;i<_alphabetSize;++i) {
		tmsum = 0.0;
		for (j=0;j<_alphabetSize;++j) {
			if (j!=i) tmsum += pam1[i][j];
		}

		if (freq[i] != 0.0)  {
			pam1[i][i]=1.0-tmsum;
		}
	}

#ifdef VERBOS
	LOG(5,<<" priting the 4*4 top-left corner of the 1pam matrix * 10^6 "<<endl);
	for (int a=0; a < 4; ++a) {
		for (int b=0; b < 4; ++b) {
			LOG(5,<<pam1[a][b]*1000000.0<<"   ");
		}
		LOG(5,<<endl);
	}
#endif
	return pam1;

}