1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
// $Id: likeDist.cpp 9582 2011-06-21 11:31:21Z cohenofi $
#include "likeDist.h"
#include "numRec.h"
#include "someUtil.h"
stochasticProcess& likeDist::getNonConstStochasticProcess() {
if (!_nonConstSpPtr) {
errorMsg::reportError("likeDist::getNonConstStochasticProcess: Can't give non-const stochasticProcess because the stochasticProcess that was given to the constructor of this likeDist object was const");
}
return *_nonConstSpPtr;
}
// ======================= functors needed for the computations =============
class C_evalLikeDistDirect{
private:
const stochasticProcess& _sp;
const sequence& _s1;
const sequence& _s2;
const vector<MDOUBLE> * _weights;
public:
C_evalLikeDistDirect(const stochasticProcess& inS1,
const sequence& s1,
const sequence& s2,
const vector<MDOUBLE> * weights): _sp(inS1),_s1(s1),_s2(s2),_weights(weights) {};
MDOUBLE operator() (MDOUBLE dist) const {
return -likeDist::evalLikelihoodForDistance(_sp,_s1,_s2,dist,_weights);
}
};
MDOUBLE likeDist::evalLikelihoodForDistance(const stochasticProcess& sp,
const sequence& s1,
const sequence& s2,
const MDOUBLE dist,
const vector<MDOUBLE> * weights) {
MDOUBLE sumL=0.0; // sum of log likelihoods
MDOUBLE posLikelihood = 0.0; // likelihood of a specific position
for (int pos=0; pos < s1.seqLen(); ++pos){
if (s1.isUnknown(pos) && s2.isUnknown(pos)) continue; // the case of two unknowns
posLikelihood = 0.0;
if (s1.isUnknown(pos) && s2.isSpecific(pos)) {
// this is the more complicated case, where s1 = ?, s2 = specific
posLikelihood = sp.freq(s2[pos]);
} else if (s2.isUnknown(pos) && s1.isSpecific(pos)) {
posLikelihood = sp.freq(s1[pos]);
} else {
for (int rateCategor = 0; rateCategor<sp.categories(); ++rateCategor) {
MDOUBLE rate = sp.rates(rateCategor);
MDOUBLE pij= 0.0;
if (s1.isSpecific(pos) && s2.isSpecific(pos)) {//simple case, where AA i is changing to AA j
pij= sp.Pij_t(s1[pos],s2[pos],dist*rate);
posLikelihood += pij * sp.freq(s1[pos])*sp.ratesProb(rateCategor);
} else {// this is the most complicated case, when you have
// combinations of letters, for example B in one
// sequence and ? in the other.
for (int iS1 =0; iS1< sp.alphabetSize(); ++iS1) {
for (int iS2 =0; iS2< sp.alphabetSize(); ++iS2) {
if ((s1.getAlphabet()->relations(s1[pos],iS1)) &&
(s2.getAlphabet()->relations(s2[pos],iS2))) {
posLikelihood += sp.freq(iS1)*sp.Pij_t(iS1,iS2,dist*rate)*sp.ratesProb(rateCategor);
}
}
}
}
} // end of for on the rates
}
assert(posLikelihood!=0.0);
sumL += log(posLikelihood)*(weights ? (*weights)[pos]:1.0);
}
return sumL;
};
class C_evalLikeDistDirect_d{ // derivative.
private:
const stochasticProcess& _sp;
const sequence& _s1;
const sequence& _s2;
const vector<MDOUBLE> * _weights;
public:
C_evalLikeDistDirect_d(const stochasticProcess& sp,
const sequence& s1,
const sequence& s2,
const vector<MDOUBLE> * weights): _sp(sp),_s1(s1),_s2(s2),_weights(weights) {};
MDOUBLE operator() (MDOUBLE dist) const {
MDOUBLE sumL=0.0; // sum of log likelihoods
MDOUBLE posLikelihood = 0.0; // likelihood of a specific position
MDOUBLE posLikelihood_d = 0.0; // derivative of the likelihood at a specific position
for (int pos=0; pos < _s1.seqLen(); ++pos){
if (_s1.isUnknown(pos) && _s2.isUnknown(pos)) continue; // the case of two unknowns
posLikelihood = 0.0;
posLikelihood_d = 0.0;
if (_s1.isUnknown(pos) && _s2.isSpecific(pos)) {
// this is the more complicated case, where s1 = ?, s2 = specific
posLikelihood = _sp.freq(_s2[pos]);
posLikelihood_d =0.0;
} else if (_s2.isUnknown(pos) && _s1.isSpecific(pos)) {
posLikelihood = _sp.freq(_s1[pos]);
posLikelihood_d =0.0;
} else {
for (int rateCategor = 0; rateCategor<_sp.categories(); ++rateCategor) {
MDOUBLE rate = _sp.rates(rateCategor);
MDOUBLE pij= 0.0;
MDOUBLE dpij=0.0;
if (_s1.isSpecific(pos) && _s2.isSpecific(pos)) {
//simple case, where AA i is changing to AA j
pij= _sp.Pij_t(_s1[pos],_s2[pos],dist*rate);
dpij= _sp.dPij_dt(_s1[pos],_s2[pos],dist*rate)*rate;
MDOUBLE tmp = _sp.freq(_s1[pos])*_sp.ratesProb(rateCategor);
posLikelihood += pij *tmp;
posLikelihood_d += dpij*tmp;
} else {// this is the most complicated case, when you have combinations of letters,
// for example B in one sequence and ? in the other.
for (int iS1 =0; iS1< _sp.alphabetSize(); ++iS1) {
for (int iS2 =0; iS2< _sp.alphabetSize(); ++iS2) {
if ((_s1.getAlphabet()->relations(_s1[pos],iS1)) &&
(_s2.getAlphabet()->relations(_s2[pos],iS2))) {
MDOUBLE exp = _sp.freq(iS1)*_sp.ratesProb(rateCategor);
posLikelihood += exp* _sp.Pij_t(iS1,iS2,dist*rate);
posLikelihood_d += exp * _sp.dPij_dt(iS1,iS2,dist*rate)*rate;
}
}
}
}
}// end of for rate categories
}
assert(posLikelihood>0.0);
sumL += (posLikelihood_d/posLikelihood)*(_weights ? (*_weights)[pos]:1.0);
}
return -sumL;
};
};
// THIS FUNCTION EVALUATES THE LIKELIHOOD GIVEN THE DISTANCE
MDOUBLE likeDist::evalLogLikelihoodGivenDistance(const sequence& s1, const sequence& s2,
const MDOUBLE dis2evaluate) {
C_evalLikeDistDirect Cev(_sp,s1,s2,NULL);
return -Cev.operator ()(dis2evaluate);
}
MDOUBLE likeDist::giveDistanceThroughCTC( const sequence& s1,
const sequence& s2,
const vector<MDOUBLE> * weights,
MDOUBLE* score) const {
// only in the case of homogeneous model - work through pairwise EM like
countTableComponentGam ctc;
if (_sp.categories() != 1) {
errorMsg::reportError("this function only work for homogeneous model.");
}
ctc.countTableComponentAllocatePlace(s1.getAlphabet()->size(),1);
for (int i=0; i<s1.seqLen(); ++i) {
ctc.addToCounts(s1[i],s2[i],0,weights?(*weights)[i]:1.0);
}
MDOUBLE resL =0;
return giveDistance(ctc,resL);
}
const MDOUBLE likeDist::giveDistance(const countTableComponentGam& ctc,
MDOUBLE& resQ,
const MDOUBLE initialGuess) const {
//return giveDistanceNR(ctc,resL,initialGuess);
return giveDistanceBrent(ctc,resQ,initialGuess);
}
const MDOUBLE likeDist::giveDistanceBrent(const countTableComponentGam& ctc,
MDOUBLE& resL,
const MDOUBLE initialGuess) const {
const MDOUBLE ax=_minPairwiseDistance,bx=initialGuess,cx=_maxPairwiseDistance,tol=_toll;
MDOUBLE dist=-1.0;
resL = -dbrent(ax,bx,cx,
C_evalLikeDist(ctc,_sp,_unObservableData_p),
C_evalLikeDist_d(ctc,_sp,_unObservableData_p),
tol,
&dist);
return dist;
}
template <typename regF, typename dF>
MDOUBLE myNRmethod(MDOUBLE low, MDOUBLE current, MDOUBLE high, regF f,
dF df, const MDOUBLE tol, const int max_it, int & zeroFound) { // finding zero of a function.
zeroFound = 1;
MDOUBLE currentF = f(current);
if (fabs(currentF)<tol) return current;
MDOUBLE lowF = f(low);
MDOUBLE highF = f(high);
if (((lowF>0) && (highF>0)) || ((lowF<0) && (highF<0))) {// unable to find a zero
zeroFound = 0;
return 0;
}
if (lowF>0) {// fixing things to be in the right order.
MDOUBLE tmp = low;
low = high;
high = tmp;
tmp = lowF;
lowF = highF;
highF = tmp;
}
if (currentF>0) {
high = current;
highF = currentF;
} else {
low = current;
lowF = currentF;
} // now the zero is between current and either low or high.
MDOUBLE currentIntervalSize = fabs(low-high);
MDOUBLE oldIntervalSize = currentIntervalSize;
// we have to decide if we do NR or devide the interval by two:
// we want to check if the next NR step is within our interval
// recall the the next NR guess is Xn+1 = Xn - f(Xn) / f(Xn+1)
// So we want (current - currentF/currentDF) to be between low and high
for (int i=0 ; i < max_it; ++i) {
MDOUBLE currentDF = df(current);
MDOUBLE newGuess = current - currentF/currentDF;
if ((newGuess<low && newGuess> high) || (newGuess>low && newGuess< high)) {
// in this case we should do a NR step.
current = newGuess;
currentF = f(current);
if (currentF > 0){
high = current;
highF = currentF;
} else {
low = current;
lowF = currentF;
}
oldIntervalSize = currentIntervalSize;
currentIntervalSize =fabs (high-low);
if (currentIntervalSize < tol) {
return current;
}
//LOG(5,<<"NR: low= "<<low<<" high= "<<high<<endl);
}
else { // bisection
oldIntervalSize = currentIntervalSize;
currentIntervalSize /= 2.0;
current = (low+high)/2.0;
currentF = f(current);
if (currentF > 0){
high = current;
highF = currentF;
} else {
low = current;
lowF = currentF;
}
//LOG(5,<<"BIS: low= "<<low<<" high= "<<high<<endl);
if (currentIntervalSize < tol) {
return current;
}
}
}
errorMsg::reportError("to many iterations in myNR function");
return 0;
}
const MDOUBLE likeDist::giveDistanceNR( const countTableComponentGam& ctc,
MDOUBLE& resL,
const MDOUBLE initialGuess) const {
//change bx so that it will be the current branch length!
const MDOUBLE ax=_minPairwiseDistance,bx=initialGuess,cx=_maxPairwiseDistance,tol=_toll;
// LOG(5,<<"===================================================\n");
MDOUBLE dist=-1.0;
int zeroFound = 0;
dist = myNRmethod(ax,bx,cx,
C_evalLikeDist_d(ctc,_sp),
C_evalLikeDist_d2(ctc,_sp),
tol,
100,
zeroFound);// max it for NR;
if (zeroFound == 0) {// there was an error finding a zero
dist = bx;
}
return dist;
}
/*
const MDOUBLE likeDist::giveDistance( // the NR version.
const countTableComponentGam& ctc,
MDOUBLE& resL) const {
LOG(5,<<"=============="<<endl);
MDOUBLE oldGuess=0.05; // move to parameters.
if (oldGuess<0) oldGuess=0.05; // move up.
int max_it = 100;
MDOUBLE oldDist =0;
MDOUBLE currentDist =oldGuess;
MDOUBLE newDer =VERYBIG;
MDOUBLE oldDer =VERYBIG;
//const MDOUBLE ax=0,bx=1.0,cx=_maxPairwiseDistance,tol=_toll;
for (int i=0; i < max_it; ++i){
MDOUBLE sumDL=0.0;
MDOUBLE sumDL2=0.0;
for (int alph1=0; alph1 < ctc.alphabetSize(); ++alph1){
for (int alph2=0; alph2 < ctc.alphabetSize(); ++alph2){
for (int rateCategor = 0; rateCategor<_s1.categories(); ++rateCategor) {
MDOUBLE rate = _s1.rates(rateCategor);
MDOUBLE pij= _s1.Pij_t(alph1,alph2,currentDist*rate);
MDOUBLE dpij = _s1.dPij_dt(alph1,alph2,currentDist*rate);
MDOUBLE dpij2 = _s1.d2Pij_dt2(alph1,alph2,currentDist*rate);
if (pij==0) {
pij = 0.000000001;
dpij = 0.000000001;
}
sumDL+= ctc.getCounts(alph1,alph2,rateCategor)*dpij
*rate/pij;
sumDL2+= ctc.getCounts(alph1,alph2,rateCategor)*rate*(pij*dpij2-dpij *dpij)
/(pij*pij);
}
}
}
oldDer = newDer;
newDer = sumDL;
LOG(5,<<"\ndistance = "<<currentDist<<endl);
LOG(5,<<"derivation = "<<sumDL<<endl);
LOG(5,<<"sec derivation = "<<sumDL2<<endl);
oldDist = currentDist;
if ((fabs(newDer) < fabs(oldDer)) && (sumDL2 < 0)) {
currentDist = currentDist - newDer/sumDL2;
}
else {
currentDist = currentDist / 2;
}
MDOUBLE epsilonForDeriv = 0.001;// move up
if (fabs(newDer) < epsilonForDeriv) break;
}
return currentDist;
}*/
const MDOUBLE likeDist::giveDistance(const sequence& s1,
const sequence& s2,
const vector<MDOUBLE> * weights,
MDOUBLE* score) const {
const MDOUBLE ax=_minPairwiseDistance, cx=_maxPairwiseDistance,tol=_toll;
MDOUBLE bx=_jcDist.giveDistance(s1,s2,weights,score)/*=1.0*/;
if (!(bx==bx)) bx = 1.0; // safety check that the JC distance did not return nan (not a number)
if (!(bx>0)) bx = 0.000001; // safety check that the JC distance returned a positive number
MDOUBLE dist=-1.0;
MDOUBLE resL = -dbrent(ax,bx,cx,
C_evalLikeDistDirect(_sp,s1,s2,weights),
C_evalLikeDistDirect_d(_sp,s1,s2,weights),
tol,
&dist);
if (score) *score = resL;
return dist;
}
const MDOUBLE likeDist::giveLikelihood(const sequence& s1,
const sequence& s2,
MDOUBLE distance,
const vector<MDOUBLE> * weights) const
{
C_evalLikeDistDirect evalDis(_sp,s1,s2,weights);
return -evalDis(distance);
}
|