1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
|
// $Id: likelihoodComputation.cpp 9899 2011-10-11 19:56:48Z rubi $
#include "definitions.h"
#include "tree.h"
#include "computeUpAlg.h"
#include "likelihoodComputation.h"
#include "gammaUtilities.h"
#include <cmath>
#include <cassert>
using namespace likelihoodComputation;
/********************************************************************************************
likelihood computation - full data (1)
*********************************************************************************************/
MDOUBLE likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
const Vdouble * const weights,
unObservableData *unObservableData_p)
{
computePijGam pi;
pi.fillPij(et,sp);
MDOUBLE logLforMissingData;
MDOUBLE LforMissingData;
if(unObservableData_p){
logLforMissingData = unObservableData_p->getlogLforMissingData();
LforMissingData = exp(logLforMissingData);
}
MDOUBLE res =0;
doubleRep LofPos;
int k;
for (k=0; k < sc.seqLen(); ++k) {
LofPos = likelihoodComputation::getLofPos(k,//pos,
et, //const tree&
sc, // sequenceContainer& sc,
pi, //const computePijGam& ,
sp,
NULL);
if(unObservableData_p){ // conditioning on observability for all rateCat.
LofPos = LofPos / (1- LforMissingData);
}
res += log(LofPos) * (weights?(*weights)[k]:1);//const stochasticProcess& );
}
//if(unObservableData_p){ // conditioning on observability for allPos & allRateCat
// res = res - sc.seqLen()*log(1- exp(unObservableData_p->getlogLforMissingData()));
//}
return res;
}
/********************************************************************************************
likelihood computation - per pos (1.1)
*********************************************************************************************/
doubleRep likelihoodComputation::getLofPos(const int pos,
const tree& et,
const sequenceContainer& sc,
const computePijGam& pi,
const stochasticProcess& sp,
unObservableData *unObservableData_p)
{
// with the pi already computed.
doubleRep tmp=0;
int numOfCat = sp.categories();
VdoubleRep tmpPerCat;
tmpPerCat.resize(numOfCat);
for (int i=0; i < sp.categories();++i) {
tmpPerCat[i] = getLofPos(pos,et,sc,pi[i],sp);
// ver1 - fix likelihoodForEachCat by LforMissingDataPerCat - Wrong version...
//if(pLforMissingDataPerCat){
// tmpPerCat[i] = tmpPerCat[i]/(1- (*pLforMissingDataPerCat)[i]);
//}
tmp += tmpPerCat[i]*sp.ratesProb(i);
}
// ver2 - fix likelihoodForEachCat by LforMissingDataAll
if(unObservableData_p){ // conditioning on observability for all rateCat.
tmp = tmp / (1- exp(unObservableData_p->getlogLforMissingData()));
}
return tmp;
}
/********************************************************************************************
likelihood computation - per pos, per cat (1.1.1)
*********************************************************************************************/
doubleRep likelihoodComputation::getLofPos(const int pos,
const tree& et,
const sequenceContainer& sc,
const computePijHom& pi,
const stochasticProcess& sp,
unObservableData *unObservableData_p)
{
computeUpAlg cup;
suffStatGlobalHomPos ssc;
cup.fillComputeUp(et,sc,pos,pi,ssc);
doubleRep tmp = 0.0;
for (int let = 0; let < sp.alphabetSize(); ++let) {
doubleRep tmpLcat=
ssc.get(et.getRoot()->id(),let)*
sp.freq(let);
if (!DBIG_EQUAL(convert(tmpLcat), 0.0))
{
cerr<<"tmpLcat = "<<tmpLcat<<endl;
errorMsg::reportError("error in likelihoodComputation::getLofPos. likelihood is smaller than zero");
}
//assert(tmpLcat>=0.0);
tmp+=tmpLcat;
}
// cout<<"likelihoodComputation::getLofPos: tmp = "; tmp.outputn(cout); // DEBUG EP
if (!DBIG_EQUAL(convert(tmp), 0.0)){
LOG(5,<<"likelihoodComputation::getLofPos: "<< tmp<<endl;);
LOG(5,<<"pos = "<< pos <<endl;);
tmp = EPSILON;
//errorMsg::reportError("likelihoodComputation::getLofPos: likelihood of pos was zero!",1);
}
if(unObservableData_p){ // conditioning on observability
tmp = tmp / (1- exp(unObservableData_p->getlogLforMissingData()));
}
return tmp;
}
//r4s_proportional
/********************************************************************************************
likelihood computation - full data (1)
*********************************************************************************************/
Vdouble likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(const tree& et,
const vector<sequenceContainer>& sc,
multipleStochasticProcess* msp,
const gammaDistribution* pProportionDist,
const Vdouble * const weights)
{
Vdouble geneLikelihoodVec;
//geneRateLikelihoodVec[geneN][globalRateCateg] will hold the LL of the gene given the global rate
VVdouble geneRateLikelihoodVec;
geneLikelihoodVec.resize(sc.size(),0.0);
geneRateLikelihoodVec.resize(sc.size());
for(int geneN = 0;geneN < sc.size();++geneN){
geneRateLikelihoodVec[geneN].resize(pProportionDist->categories(),0.0);
for(int globalRateCateg = 0;globalRateCateg < pProportionDist->categories();++globalRateCateg){
msp->getSp(geneN)->setGlobalRate(pProportionDist->rates(globalRateCateg));
computePijGam pi;
pi.fillPij(et,*msp->getSp(geneN));
doubleRep LofPos;
for (int k=0; k < sc[geneN].seqLen(); ++k) {
//LofPos is sum LofPos_LocalRateCat_i*p(LocalRateCat_i)
LofPos = likelihoodComputation::getLofPosProportional(k,//pos,
et, //const tree&
sc[geneN], // sequenceContainer& sc,
pi, //const computePijGam& ,
*msp->getSp(geneN)); //removed the prior of the globar rate categ cause it is multiplied below
geneRateLikelihoodVec[geneN][globalRateCateg] += log(LofPos)*(weights?(*weights)[k]:1);
}
}
//Once we are finished iterating over all globalRateCategs we need to sum the log likelihood for this gene
//which is: log(prior(globalRateCateg_i)*exp(geneRateLikelihoodVec[geneN][globalRateCateg_i]+prior(globalRateCateg_j)*exp(geneRateLikelihoodVec[geneN][globalRateCateg_j]..)
//assuming a flat prior this equals: log(prior(globalRateCateg))+log(exp(geneRateLikelihoodVec[geneN][globalRateCateg_i]+exp(geneRateLikelihoodVec[geneN][globalRateCateg_j]..)
//which can be written as:log(prior(globalRateCateg))+log(exp(geneRateLikelihoodVec[geneN][globalRateCateg_i]))(1+exp(geneRateLikelihoodVec[geneN][globalRateCateg_j]-geneRateLikelihoodVec[geneN][globalRateCateg_i]..)
geneLikelihoodVec[geneN] = log(pProportionDist->ratesProb(0))+exponentResolver(geneRateLikelihoodVec[geneN]);//Strictly assumes a flat prior distribution
}
return geneLikelihoodVec;
}
/********************************************************************************************
likelihood computation - per pos (1.1)
*********************************************************************************************/
//Old - remove when QA is done
doubleRep likelihoodComputation::getLofPosProportional(const int pos,
const tree& et,
const sequenceContainer& sc,
const computePijGam& pi,
const stochasticProcess& sp,
const MDOUBLE globalRateProb)
{
// with the pi already computed.
doubleRep tmp=0;
int numOfCat = sp.categories();
VdoubleRep tmpPerCat;
tmpPerCat.resize(numOfCat);
for (int i=0; i < sp.categories();++i) {
tmpPerCat[i] = getLofPos(pos,et,sc,pi[i],sp);
tmp += tmpPerCat[i]*sp.ratesProb(i)*globalRateProb; //old - now globalRateProb is multipled outside
}
return tmp;
}
/********************************************************************************************
likelihood computation - per pos (1.1)
*********************************************************************************************/
doubleRep likelihoodComputation::getLofPosProportional(const int pos,
const tree& et,
const sequenceContainer& sc,
const computePijGam& pi,
const stochasticProcess& sp)
{
// with the pi already computed.
doubleRep tmp=0;
int numOfCat = sp.categories();
VdoubleRep tmpPerCat;
tmpPerCat.resize(numOfCat);
for (int i=0; i < sp.categories();++i) {
tmpPerCat[i] = getLofPos(pos,et,sc,pi[i],sp);
tmp += tmpPerCat[i]*sp.ratesProb(i);
}
return tmp;
}
//r4s_proportional
/********************************************************************************************
*********************************************************************************************/
doubleRep likelihoodComputation::getProbOfPosWhenUpIsFilledHom(const int pos,
const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
const suffStatGlobalHomPos& ssc){
// using the pij of stochastic process rather than pre computed pij's...
if (ssc.size()==0) {errorMsg::reportError("error in function likelihoodComputation::getLofPosWhenUpIsFilled");}
doubleRep tmp = 0.0;
for (int let = 0; let < sp.alphabetSize(); ++let) {
doubleRep tmpLcat=
ssc.get(et.getRoot()->id(),let)*
sp.freq(let);
tmp+=tmpLcat;
}
return tmp;
}
/********************************************************************************************
*********************************************************************************************/
doubleRep likelihoodComputation::getLofPosHomModelEachSiteDifferentRate(const int pos,
const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp){
// using the pij of stochastic process rather than pre computed pij's...
if (sp.categories()!=1) {
errorMsg::reportError("num of categories in function getLofPosHomModel must be one");
}
computeUpAlg cup;
suffStatGlobalHomPos ssc;
computePijHom cpij;
cpij.fillPij(et,sp);
cup.fillComputeUp(et,sc,pos,cpij,ssc);
return getProbOfPosWhenUpIsFilledHom(pos,et,sc,sp,ssc);
}
/********************************************************************************************
*********************************************************************************************/
doubleRep likelihoodComputation::getLofPosGamModelEachSiteDifferentRate(const int pos,
const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp){
computePijGam pi;
pi.fillPij(et,sp);
return getLofPos(pos,et,sc,pi,sp);
}
/********************************************************************************************
*********************************************************************************************/
doubleRep likelihoodComputation::getLofPos(const int pos,
const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
const MDOUBLE gRate){ // when there is a global rate for this position
// using the pij of stochastic process rather than pre computed pij's...
computeUpAlg cup;
suffStatGlobalHomPos ssc;
cup.fillComputeUpSpecificGlobalRate(et,sc,pos,sp,ssc,gRate);
doubleRep tmp = 0.0;
for (int let = 0; let < sp.alphabetSize(); ++let) {
doubleRep tmpLcat=
ssc.get(et.getRoot()->id(),let)*
sp.freq(let);;
assert(tmpLcat>=0.0);
tmp+=tmpLcat;
}
return tmp;
}
/********************************************************************************************
*********************************************************************************************/
doubleRep likelihoodComputation::getLofPosAndPosteriorOfRates(const int pos,
const tree& et,
const sequenceContainer& sc,
const computePijGam& pi,
const stochasticProcess& sp,
VdoubleRep& postrior){
// with the pi already computed.
doubleRep tmp=0;
for (int i=0; i < sp.categories();++i) {
postrior[i]=getLofPos(pos,et,sc,pi[i],sp)*sp.ratesProb(i);
tmp += postrior[i];
}
for (int i=0; i < sp.categories();++i)
postrior[i] /= tmp;
return tmp;
}
/********************************************************************************************
*********************************************************************************************/
MDOUBLE likelihoodComputation::getTreeLikelihoodFromUp(const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
const suffStatGlobalGam& cup,
const Vdouble * weights) {
MDOUBLE like = 0;
//computing the likelihood from up:
for (int pos = 0; pos < sc.seqLen(); ++pos) {
doubleRep tmp=0;
for (int categor = 0; categor < sp.categories(); ++categor) {
doubleRep veryTmp =0;
for (int let =0; let < sc.getAlphabet()->size(); ++let) {
veryTmp+=cup.get(pos,categor,et.getRoot()->id(),let) * sp.freq(let);
}
tmp += veryTmp*sp.ratesProb(categor);
}
like += log(tmp) * (weights?(*weights)[pos]:1);
}
return like;
}
/********************************************************************************************
*********************************************************************************************/
MDOUBLE likelihoodComputation::getTreeLikelihoodFromUp2(const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
const suffStatGlobalGam& cup,
VdoubleRep& posLike, // fill this vector with each position likelihood but without the weights.
const Vdouble * weights,
unObservableData* unObservableData_p) {
posLike.clear();
MDOUBLE like = 0;
//computing the likelihood from up:
for (int pos = 0; pos < sc.seqLen(); ++pos) {
doubleRep tmp=0;
for (int categor = 0; categor < sp.categories(); ++categor) {
doubleRep veryTmp =0;
for (int let =0; let < sc.alphabetSize(); ++let) {
veryTmp+=cup.get(pos,categor,et.getRoot()->id(),let) * sp.freq(let);
}
tmp += veryTmp*sp.ratesProb(categor);
}
assert(tmp>0.0);
if(unObservableData_p){
tmp = tmp/(1- exp(unObservableData_p->getlogLforMissingData()));
}
like += log(tmp) * (weights?(*weights)[pos]:1);
posLike.push_back(tmp);
}
return like;
}
/********************************************************************************************
*********************************************************************************************/
//old
MDOUBLE likelihoodComputation::getTreeLikelihoodFromUp2(const tree& et,
const sequenceContainer& sc,
stochasticProcess& sp,
const suffStatGlobalGamProportional& cup,
const gammaDistribution* pProportionDist,
VdoubleRep& posLike, // fill this vector with each position likelihood but without the weights.
const Vdouble * weights) {
posLike.clear();
MDOUBLE like = 0.0;
//computing the likelihood from up:
for (int pos = 0; pos < sc.seqLen(); ++pos) {
doubleRep tmp(0.0);
for(int globalRateCategor = 0;globalRateCategor < pProportionDist->categories();++globalRateCategor){
for (int localRateCategor = 0; localRateCategor < sp.categories(); ++localRateCategor) {
doubleRep veryTmp =0;
for (int let =0; let < sc.alphabetSize(); ++let) {
veryTmp+=cup.get(pos,globalRateCategor,localRateCategor,et.getRoot()->id(),let) * sp.freq(let);
}
tmp += veryTmp*pProportionDist->ratesProb(globalRateCategor)*sp.ratesProb(localRateCategor);
}
}
assert(tmp>0.0);
like += log(tmp) * (weights?(*weights)[pos]:1);
posLike.push_back(tmp);
}
return like;
}
//new
MDOUBLE likelihoodComputation::getTreeLikelihoodFromUp2(const tree& et,
const sequenceContainer& sc,
stochasticProcess& sp,
const suffStatGlobalGamProportional& cup,
const gammaDistribution* pProportionDist,
VVdoubleRep& posLike,
const Vdouble * weights) {
for(int pos = 0;pos < sc.seqLen();++pos){
posLike[pos].resize(pProportionDist->categories(),0.0);
}
Vdouble geneRateLikelihoodVec;
geneRateLikelihoodVec.resize(pProportionDist->categories(),0.0);
MDOUBLE like = 0.0;
//computing the likelihood from up:
for (int pos = 0; pos < sc.seqLen(); ++pos) {
VdoubleRep tmpVec; //hold the LofPos for each global rate category
tmpVec.resize(pProportionDist->categories(),0.0);//This would sum for every global rate category
for(int globalRateCategor = 0;globalRateCategor < pProportionDist->categories();++globalRateCategor){
doubleRep tmp1(0.0);
doubleRep tmp2(0.0);
for (int localRateCategor = 0; localRateCategor < sp.categories(); ++localRateCategor) {
doubleRep veryTmp(0.0);
for (int let =0; let < sc.alphabetSize(); ++let) {
veryTmp+=cup.get(pos,globalRateCategor,localRateCategor,et.getRoot()->id(),let) * sp.freq(let);
}
tmp1 += veryTmp;
tmp2 += veryTmp*sp.ratesProb(localRateCategor);
}
tmpVec[globalRateCategor] += tmp2;
posLike[pos][globalRateCategor] = tmp1;
}
for(int globalRateCategor = 0;globalRateCategor < pProportionDist->categories();++globalRateCategor){
assert(tmpVec[globalRateCategor]>0.0);
geneRateLikelihoodVec[globalRateCategor] += log(tmpVec[globalRateCategor])*(weights?(*weights)[pos]:1);
}
}
like = log(pProportionDist->ratesProb(0))+exponentResolver(geneRateLikelihoodVec);
return like;
}
/********************************************************************************************
fill the posteriorLike matrix with each position posterior rate (p(r|D))
but without the weights.
*********************************************************************************************/
MDOUBLE likelihoodComputation::getPosteriorOfRates(const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
VVdoubleRep& posteriorLike,
const Vdouble * weights) {
suffStatGlobalGam cup;
computeUpAlg cupAlg;
computePijGam cpGam;
cpGam.fillPij(et,sp);
cupAlg.fillComputeUp(et,sc,cpGam,cup);
return getPosteriorOfRates(et,sc,sp,cup,posteriorLike,weights);
}
// fill the posteriorLike matrix with each position posterior rate (p(r|D))
// but without the weights.
MDOUBLE likelihoodComputation::getPosteriorOfRates(const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
const suffStatGlobalGam& cup,
VVdoubleRep& posteriorLike,
const Vdouble * weights) {
posteriorLike.clear();
posteriorLike.resize(sc.seqLen());
for (int z=0; z < posteriorLike.size(); ++z) posteriorLike[z].resize(sp.categories());
MDOUBLE like = 0;
//computing the likelihood from up:
for (int pos = 0; pos < sc.seqLen(); ++pos) {
doubleRep posProb=0;
for (int categor = 0; categor < sp.categories(); ++categor) {
doubleRep veryTmp =0;
for (int let =0; let < sc.getAlphabet()->size(); ++let) {
veryTmp+=cup.get(pos,categor,et.getRoot()->id(),let) * sp.freq(let);
}
posProb += veryTmp*sp.ratesProb(categor);
posteriorLike[pos][categor] += veryTmp*sp.ratesProb(categor);
}
like += log(posProb) * (weights?(*weights)[pos]:1);
for (int categor1 = 0; categor1 < sp.categories(); ++categor1) {
posteriorLike[pos][categor1] /= posProb;
}
}
return like;
}
// fill the posteriorLike matrix with each position posterior rate (p(r|D))
// and the LLPP, but without the weights.
MDOUBLE likelihoodComputation::getPosteriorOfRatesAndLLPP(const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
const suffStatGlobalGam& cup,
VVdoubleRep& posteriorLike,
VdoubleRep& LLPerPos,
const Vdouble * weights) {
posteriorLike.clear();
posteriorLike.resize(sc.seqLen());
for (int z=0; z < posteriorLike.size(); ++z) posteriorLike[z].resize(sp.categories());
MDOUBLE like = 0;
//computing the likelihood from up:
for (int pos = 0; pos < sc.seqLen(); ++pos) {
LLPerPos[pos] = 0.0;
for (int categor = 0; categor < sp.categories(); ++categor) {
doubleRep veryTmp =0;
for (int let =0; let < sc.getAlphabet()->size(); ++let) {
veryTmp+=cup.get(pos,categor,et.getRoot()->id(),let) * sp.freq(let);
}
LLPerPos[pos] += veryTmp*sp.ratesProb(categor);
posteriorLike[pos][categor] += veryTmp*sp.ratesProb(categor);
}
like += log(LLPerPos[pos]) * (weights?(*weights)[pos]:1);
for (int categor1 = 0; categor1 < sp.categories(); ++categor1) {
posteriorLike[pos][categor1] /= LLPerPos[pos];
}
}
return like;
}
// this function forces non gamma computation of likelihoods from up.
// i.e., even if the stochastic process is really gamma - the likelihood is computed as if there's no gamma.
MDOUBLE likelihoodComputation::getTreeLikelihoodFromUpSpecifcRates(const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
const suffStatGlobalHom& cup,
VdoubleRep& posLike, // fill this vector with each position likelihood but without the weights.
const Vdouble * weights)
{
posLike.clear();
MDOUBLE like = 0;
//computing the likelihood from up:
for (int pos = 0; pos < sc.seqLen(); ++pos)
{
doubleRep tmp=0;
for (int let =0; let < sc.getAlphabet()->size(); ++let) {
tmp += cup.get(pos, et.getRoot()->id(), let) * sp.freq(let);
}
assert(tmp > 0);
like += log(tmp) * (weights?(*weights)[pos]:1);
posLike.push_back(tmp);
}
return like;
}
/********************************************************************************************
*********************************************************************************************/
doubleRep likelihoodComputation::getProbOfPosWhenUpIsFilledGam(const int pos,
const tree& et,
const sequenceContainer& sc,
const stochasticProcess& sp,
const suffStatGlobalGamPos& cup) {
doubleRep tmp=0;
for (int categor = 0; categor < sp.categories(); ++categor) {
doubleRep veryTmp =0;
for (int let =0; let < sc.alphabetSize(); ++let) {
veryTmp+=cup.get(categor,et.getRoot()->id(),let) * sp.freq(let);
}
tmp += veryTmp*sp.ratesProb(categor);
}
assert(tmp>0.0);
return tmp;
}
/********************************************************************************************
*********************************************************************************************/
MDOUBLE likelihoodComputation::computeLikelihoodAndLikelihoodPerPosition(const sequenceContainer &sc, const tree &et,
const stochasticProcess &sp, Vdouble &LLPerPos) {
MDOUBLE treeLogLikelihood = 0.0;
computePijGam cpij;
cpij.fillPij(et, sp);
LLPerPos.resize(sc.seqLen());
doubleRep LofPos;
for (int pos=0; pos < sc.seqLen() ;++pos) {
LofPos = likelihoodComputation::getLofPos(pos, et, sc, cpij, sp);
MDOUBLE tmpLL = log(LofPos);
treeLogLikelihood += tmpLL;
LLPerPos[pos] = tmpLL;
}
return treeLogLikelihood;
}
/********************************************************************************************
likelihood for each category - used for unObservableData
*********************************************************************************************/
Vdouble likelihoodComputation::getLofPosPerCat(const int pos,
const tree& et,
const sequenceContainer& sc,
const computePijGam& pi,
const stochasticProcess& sp)
{
// with the pi already computed.
int numOfCat = sp.categories();
Vdouble tmp;
tmp.resize(numOfCat);
for (int i=0; i < numOfCat;++i) {
tmp[i] = convert(getLofPos(pos,et,sc,pi[i],sp))*sp.ratesProb(i);
}
return tmp;
}
//doubleRep likelihoodComputation::getLofPos(const int pos,
// const tree& et,
// const sequenceContainer& sc,
// const computePijGam& pi,
// const stochasticProcess& sp){
//// with the pi already computed.
// doubleRep tmp=0;
// for (int i=0; i < sp.categories();++i) {
// tmp += getLofPos(pos,et,sc,pi[i],sp)*sp.ratesProb(i);
// }
// return tmp;
//}
// MDOUBLE likelihoodComputation::getTreeLikelihoodFromPosteriorAndAlpha(const MDOUBLE alpha,
// const Vdouble originalBounderi,
// const VVdouble& posteriorLike,
// const VdoubleRep& LLPP,
// const Vdouble* weights)
// {
// int nCategories = originalBounderi.size()-1;
// Vdouble rateWeights; rateWeights.resize(nCategories);
// for (int i=0; i<n; ++i)
// rateWeights[i]=(gammp(alpha, originalBounderi[i+1]*alpha)-gammp(alpha, originalBounderi[i]*alpha))*nCategories;
// }
|