1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
// $Id: nj.cpp 9948 2011-10-23 15:53:03Z cohenofi $
// version 1.00
// last modified 3 Nov 2002
#include "nj.h"
#include "errorMsg.h"
#include "logFile.h"
#include "treeUtil.h"
#include <cassert>
#include <algorithm>
#include <map>
using namespace std;
//------------------------------------------
// general outline:
// we follow Swofford's book, "Molecular Systematics" pg489.
// currentNodes is the vector of the nodes that are "in process".
// in the beggining, these are all the leaves. Once, 2 leaves are separeted,
// they are excluded from currentNodes, and their father is added to currentNodes.
// we (almost) finish the algorithm when currentNodes's size is 3. (i.e., we know the topology).
// thus when we start from an evolutionary tree, all we do, is to construct a star (start) tree
//------------------------------------------
//------------------------------------------
// constructor and start
//------------------------------------------
tree NJalg::computeTree(VVdouble distances,const vector<string>& names, const tree * const constriantTree /*= NULL*/){
assert(distances.size() == names.size());
tree resTree = startingTree(names);
if (distances.size()<3) return resTree;
vector<tree::nodeP> currentNodes;
resTree.getAllLeaves(currentNodes,resTree.getRoot());
if (constriantTree) {
njConstraint njc(resTree, *constriantTree);
while (currentNodes.size() >= 3) NJiterate(resTree,currentNodes,distances, njc);
} else {
while (currentNodes.size() >= 3) NJiterate(resTree,currentNodes,distances);
}
resTree.create_names_to_internal_nodes();
resTree.makeSureAllBranchesArePositive();
LOGDO(5,resTree.output(myLog::LogFile()));
return resTree;
}
tree NJalg::startingTree(const vector<string>& names) {
return starTree(names);
}
tree NJalg::startingTree(const tree& inTree) {
tree et;
et.createRootNode();
vector<tree::nodeP> allLeaves;
inTree.getAllLeaves(allLeaves,inTree.getRoot());
vector<string> names(allLeaves.size());
for (int k = 0 ; k < allLeaves.size(); ++k)
names[k]=allLeaves[k]->name();
return startingTree(names);
}
void NJalg::updateBranchDistance(const VVdouble& distanceTable,
const Vdouble& rValues,
tree::nodeP nodeNew,
tree::nodeP nodeI,
tree::nodeP nodeJ,
int Iplace,
int Jplace) {
MDOUBLE dis= (Iplace<Jplace) ? distanceTable[Iplace][Jplace] : distanceTable[Jplace][Iplace];
MDOUBLE DisI_new = dis/2.0;
MDOUBLE tmp = rValues[Iplace] - rValues[Jplace];
tmp/= ( 2.0*(distanceTable.size()-2) );
DisI_new = DisI_new+ tmp;
MDOUBLE DisJ_new = dis - DisI_new;
if (DisI_new<tree::SHORT_LENGTH_VALUE) DisI_new=tree::SHORT_LENGTH_VALUE; // no negative..
if (DisJ_new<tree::SHORT_LENGTH_VALUE) DisJ_new=tree::SHORT_LENGTH_VALUE; // no negative..
nodeI->setDisToFather(DisI_new);
nodeJ->setDisToFather(DisJ_new);
}
void NJalg::NJiterate(tree& et,
vector<tree::nodeP>& currentNodes,
VVdouble& distanceTable) {
Vdouble rVector = calc_r_values(currentNodes,distanceTable);//CHECK2
if (currentNodes.size() == 3) {
update3taxaLevel(distanceTable,rVector,currentNodes);
currentNodes.clear();
return;
}
int minRaw,minCol;
calc_M_matrix(currentNodes,distanceTable,rVector,minRaw,minCol);//CHECK3
tree::nodeP nodeI = currentNodes[minRaw];
tree::nodeP nodeJ = currentNodes[minCol];
tree::nodeP theNewNode;
theNewNode= SeparateNodes(et,nodeI,nodeJ);
//CHECK4
updateBranchDistance(distanceTable,rVector,theNewNode,nodeI,nodeJ,minRaw,minCol);
//CHECK6
et.create_names_to_internal_nodes();
UpdateDistanceTableAndCurrentNodes(currentNodes,distanceTable,nodeI,nodeJ,theNewNode,minRaw,minCol);
}
void NJalg::NJiterate(tree& et,
vector<tree::nodeP>& currentNodes,
VVdouble& distanceTable,
njConstraint& njc) {
Vdouble rMatrix = calc_r_values(currentNodes,distanceTable);//CHECK2
if (currentNodes.size() == 3) {
update3taxaLevel(distanceTable,rMatrix,currentNodes);
currentNodes.clear();
return;
}
int minRaw,minCol;
calc_M_matrix(currentNodes,distanceTable,rMatrix,minRaw,minCol, njc);//CHECK3
tree::nodeP nodeI = currentNodes[minRaw];
tree::nodeP nodeJ = currentNodes[minCol];
tree::nodeP theNewNode;
theNewNode= SeparateNodes(et,nodeI,nodeJ);
njc.join(nodeI, nodeJ, theNewNode);
//CHECK4
updateBranchDistance(distanceTable,rMatrix,theNewNode,nodeI,nodeJ,minRaw,minCol);
//CHECK6
et.create_names_to_internal_nodes();
UpdateDistanceTableAndCurrentNodes(currentNodes,distanceTable,nodeI,nodeJ,theNewNode,minRaw,minCol);
LOGDO(15,et.output(myLog::LogFile(),tree::ANCESTORID));
}
Vdouble NJalg::calc_r_values(vector<tree::nodeP>& currentNodes,
const VVdouble& distanceTable) {
Vdouble r_values(currentNodes.size(),0.0);
for (int i=0; i <r_values.size();++i) {
for (int j =0; j < r_values.size();++j) {
MDOUBLE dis= (i<j) ? distanceTable[i][j] : distanceTable[j][i];
r_values[i] += dis;
}
}
return r_values;
}
void NJalg::calc_M_matrix(vector<tree::nodeP>& currentNodes,
const VVdouble& distanceTable,
const Vdouble & r_values,
int& minRaw,int& minCol){
MDOUBLE min = VERYBIG;
for (int i=0; i < currentNodes.size();++i){
for (int j =i+1; j < currentNodes.size();++j) {
MDOUBLE dis= (i<j) ? distanceTable[i][j] : distanceTable[j][i];
MDOUBLE tmp = dis-(r_values[i]+r_values[j])/(currentNodes.size()-2);
if (tmp<min) {minRaw = i;minCol=j;min=tmp;}
}
}
}
void NJalg::calc_M_matrix(vector<tree::nodeP>& currentNodes,
const VVdouble& distanceTable,
const Vdouble & r_values,
int& minRaw,int& minCol,
const njConstraint& njc){
MDOUBLE min = VERYBIG;
MDOUBLE min_noc = VERYBIG;
int minRaw_noc=-1,minCol_noc=-1;
for (int i=0; i < currentNodes.size();++i){
for (int j =i+1; j < currentNodes.size();++j) {
if (njc.isCompatible(currentNodes[i],currentNodes[j])) {
MDOUBLE dis= (i<j) ? distanceTable[i][j] : distanceTable[j][i];
MDOUBLE tmp = dis-(r_values[i]+r_values[j])/(currentNodes.size()-2);
if (tmp<min) {minRaw = i;minCol=j;min=tmp;}
}
LOGDO(10,{
MDOUBLE dis= (i<j) ? distanceTable[i][j] : distanceTable[j][i];
MDOUBLE tmp = dis-(r_values[i]+r_values[j])/(currentNodes.size()-2);
if (tmp<min_noc) {minRaw_noc = i;minCol_noc=j;min_noc=tmp;}
});
}
}
LOGDO(10, {if (min_noc != min) {myLog::LogFile()
<< "NJ-constratin changes outcome " <<
currentNodes[minRaw_noc]->name()<<","<<currentNodes[minCol_noc]->name() <<"-> " <<
currentNodes[minRaw] ->name()<<","<<currentNodes[minCol] ->name()<<
" ("<<min-min_noc<<")"<<endl;
njc.isCompatible(currentNodes[minRaw_noc], currentNodes[minCol_noc], true);
myLog::LogFile() << njc <<endl;
}
});
}
tree::nodeP NJalg::SeparateNodes(tree& et, tree::nodeP node1,
tree::nodeP node2) {
if (node1->father() != node2->father())
errorMsg::reportError(" error in function NJalg::SeparateNodes - nodes don't have the same father");
tree::nodeP fatherNode = node1->father();
tree::nodeP theNewNode = et.createNode(fatherNode,et.getNodesNum());
node1->setFather(theNewNode);
theNewNode->setSon(node1);
node2->setFather(theNewNode);
theNewNode->setSon(node2);
// remove from son list of father node.
fatherNode->removeSon(node1);
fatherNode->removeSon(node2);
return theNewNode;
}
void NJalg::update3taxaLevel(VVdouble& distanceTable,Vdouble & r_values,
vector<tree::nodeP>& currentNodes) {
// update the distance of the 3 taxa that are left in the end, to the root.
MDOUBLE dis0root = distanceTable[0][1]/2+0.5*(r_values[0]-r_values[1]);
MDOUBLE dis1root = distanceTable[0][1]/2+0.5*(r_values[1]-r_values[0]);
MDOUBLE dis2root = distanceTable[0][2]/2+0.5*(r_values[2]-r_values[0]);
if (dis0root<tree::SHORT_LENGTH_VALUE) dis0root=tree::SHORT_LENGTH_VALUE; // no negative..
if (dis1root<tree::SHORT_LENGTH_VALUE) dis1root=tree::SHORT_LENGTH_VALUE; // no negative..
if (dis2root<tree::SHORT_LENGTH_VALUE) dis2root=tree::SHORT_LENGTH_VALUE; // no negative..
currentNodes[0]->setDisToFather(dis0root);
currentNodes[1]->setDisToFather(dis1root);
currentNodes[2]->setDisToFather(dis2root);
}
void NJalg::UpdateDistanceTableAndCurrentNodes(vector<tree::nodeP>& currentNodes,
VVdouble& distanceTable,
tree::nodeP nodeI,
tree::nodeP nodeJ,
tree::nodeP theNewNode,
int Iplace,
int Jplace) {
// Iplace is the place of i in the "old" currentNodes vector
int i,j;
// updating currentNodes
vector<tree::nodeP> newCurrentNode= currentNodes;
vector<tree::nodeP>::iterator vec_iter1=remove(
newCurrentNode.begin(),newCurrentNode.end(),nodeI );
newCurrentNode.erase(vec_iter1,newCurrentNode.end());
vector<tree::nodeP>::iterator vec_iter2=remove(
newCurrentNode.begin(),newCurrentNode.end(),nodeJ );
newCurrentNode.erase(vec_iter2,newCurrentNode.end());
newCurrentNode.push_back(theNewNode);
map<tree::nodeP,int> nodeIntMap1;
for (int z=0; z<currentNodes.size();++z) {
nodeIntMap1.insert(map<tree::nodeP,int>::value_type(currentNodes[z],z));
}
VVdouble newDisTable;
newDisTable.resize(newCurrentNode.size());
for (int z1=0;z1<newDisTable.size();++z1) newDisTable[z1].resize(newCurrentNode.size(),0.0);
// updatine the table
for (i=0; i < newCurrentNode.size(); i++) {
for (j=i+1; j < newCurrentNode.size() ; j++) {
if ((i!=newCurrentNode.size()-1) && (j!=newCurrentNode.size()-1)) {// both old nodes
int oldI = nodeIntMap1[newCurrentNode[i]];
int oldJ = nodeIntMap1[newCurrentNode[j]];
MDOUBLE dis= (oldI<oldJ) ? distanceTable[oldI][oldJ] : distanceTable[oldJ][oldI];
newDisTable[i][j] = dis;
} //else if (i==newCurrentNode.size()-1) { // i is new
// newDisTable[i][j] = (dis(Iplace,NewOldPlaces[j])+dis(Jplace,NewOldPlaces[j])-dis(Iplace,Jplace))/2.0;
//}
else if (j==newCurrentNode.size()-1) { // j is new
int oldI = Iplace;
int oldJ = Jplace;
int oldK = nodeIntMap1[newCurrentNode[i]];
MDOUBLE disIK= (oldI<oldK) ? distanceTable[oldI][oldK] : distanceTable[oldK][oldI];
MDOUBLE disIJ= (oldI<oldJ) ? distanceTable[oldI][oldJ] : distanceTable[oldJ][oldI];
MDOUBLE disJK= (oldJ<oldK) ? distanceTable[oldJ][oldK] : distanceTable[oldK][oldJ];
newDisTable[i][j] = 0.5*(disIK+disJK-disIJ); //EQ. 43 SWOFFORD PAGE 489.
}
}
}
currentNodes=newCurrentNode;
distanceTable=newDisTable;
}
/*
NJalg::NJalg(){
_myET = NULL;
}
//-----------------------------
// The algorithm
//-----------------------------
void NJalg::GetDisTable(const sequenceContainer& sd,const vector<MDOUBLE> * weights) {
VVresize(_startingDistanceTable,distanceTable.size(),distanceTable.size());// for printing stuff later.
VVresize(LTable,distanceTable.size(),distanceTable.size());// for printing stuff later.
int i,j;
_nodeNames.resize(currentNodes.size());
for ( i=0; i < currentNodes.size(); i++) {
_nodeNames[i] =(currentNodes[i]->name());
for ( j=i+1; j < currentNodes.size(); j++) {
MDOUBLE tempDis = -2000.0;
MDOUBLE resLikelihood;
int seqnodeI_ID = sd.getId(currentNodes[i]->name());
int seqnodeJ_ID = sd.getId(currentNodes[j]->name());
const sequence& snodeI = *sd.getSeqPtr(seqnodeI_ID,true);
const sequence& snodeJ = *sd.getSeqPtr(seqnodeJ_ID,true);
tempDis = _cd->giveDistance(snodeI,snodeJ,weights,&resLikelihood);
distanceTable[i][j] = tempDis;
LTable[i][j] = resLikelihood;
}
}
if (myLog::LogLevel()>4) {
for (i=0; i < currentNodes.size(); i++) {
for (j=i+1; j < currentNodes.size(); j++) {
LOG(100,<<"nj distance ["<<i<<"]["<<j<<"] ="<<distanceTable[i][j]<<endl);
}
}
}
//if (myLog::LogLevel()>4) {
// for (i=0; i < currentNodes.size(); i++) {
// for (j=i+1; j < currentNodes.size(); j++) {
// LOG(4,<<"nj likelihood for distance["<<i<<"]["<<j<<"] ="<<LTable[i][j]<<endl);
// }
// }
//}
// for printing stuff later.
for (int tmp1=0; tmp1<distanceTable.size();++tmp1)
for (int tmp2=0; tmp2<distanceTable.size();++tmp2)
_startingDistanceTable[tmp1][tmp2] = distanceTable[tmp1][tmp2];
}
void NJalg::NJiterate() {
getMmatrixFromDistanceTable();
int minRaw,minCol;
findMinM(minRaw,minCol);
tree::nodeP nodeI = currentNodes[minRaw];
tree::nodeP nodeJ = currentNodes[minCol];
tree::nodeP theNewNode;
theNewNode= SeparateNodes(nodeI,nodeJ);
//CHECK4
updateBranchDistance(theNewNode,nodeI,nodeJ,minRaw,minCol);
//CHECK6
UpdateDistanceTableAndCurrentNodes(nodeI,nodeJ,theNewNode,minRaw,minCol);
}
//CHECK1
//cout<<"\n-----------------------------------------------"<<endl;
//for (int h=0; h < currentNodes.size(); h++) cout<<currentNodes[h]->name()<<" = "<<h<<endl;
//CHECK2
// for (int i =0; i < r_values.size();++i) cout<<"r["<<i<<"] = "<<r_values[i]<<endl;
//CHECK3
// for (i =0; i < currentNodes.size();++i)
// for (int j =i+1; j <currentNodes.size();++j)
// cout<<"M["<<i<<"]["<<j<<"] = "<<Mmatrix[i][j]<<endl;
//CHECK4
// string htuname = "HTU";
// char k = 'a'+currentNodes.size();
// htuname+=k;
// theNewNode->SetName(htuname);
//CHECK5
//_myET->getRoot()->SetName("RootOfStar");
//CHECK6
// et.output(cout,et.getRoot(),tree::ANCESTOR);
*/
|