File: numRec.cpp

package info (click to toggle)
fastml 3.11-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,772 kB
  • sloc: cpp: 48,522; perl: 3,588; ansic: 819; makefile: 386; python: 83; sh: 55
file content (498 lines) | stat: -rw-r--r-- 11,947 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// $Id: numRec.cpp 5990 2009-03-19 10:21:20Z privmane $

#include "numRec.h"
#include "matrixUtils.h"
#include <cassert>
#include <algorithm>

#ifndef VERBOS
#define VERBOS
#endif

void validateSym(VVdouble & v) {
	const MDOUBLE epsilon = 0.00000001;
	for (int i=0; i < v.size(); ++i) {
		for (int j=i+1; j < v.size(); ++j) {
			if (fabs(v[i][j] - v[j][i])> epsilon) {
				LOG(5,<<"v["<<i<<"]["<<j<<"]="<<v[i][j]<<endl);
				LOG(5,<<"v["<<j<<"]["<<i<<"]="<<v[j][i]<<endl);

				errorMsg::reportError("trying to find eigen values to non-sym matrix");
			}
			else v[i][j] = v[j][i];
		}
	}
}

int MyJacobi(VVdouble &Insym, VVdouble &RightEigenV, Vdouble &EigenValues) {
	validateSym(Insym);
	const int MaxNumberOfSweeps = 100000;
	VVdouble& v = RightEigenV;
	VVdouble& a = Insym;
	Vdouble& d = EigenValues;
	//CheckSizeAndTypeAndResizeIfNessary();
	int i,j;
	const int size = v.size();
		
	// preparing V to be the indentity matrix
	for (i=0; i<size; ++i) {
	  for (int j=0; j<size ; ++j) v[i][j]=0.0;
	  v[i][i] = 1.0;
	}
	
		
	for (i=0 ; i<size; ++i ) {
	  d[i] = a[i][i];
	}

	MDOUBLE sm = 0.0; // sm is the sum of the off-diagonal elements
	int ip, iq;
	for (i = 0; i< MaxNumberOfSweeps ; ++i) {
		sm = 0.0;
		for (ip = 0; ip<size ; ++ip) {
			for (iq = ip+1; iq <size; ++iq)	sm +=fabs (a[ip][iq]);
		}
		//if(i%300==0)
		//	LOG(5,<<"sm= "<<sm<<endl);
		if (sm == 0.0) return 0; // the program is suppose to return here, after some rounds of i.
		MDOUBLE tresh;
		if (i<3) tresh = 0.2 * sm / (size*size); else tresh = 0.0;

		MDOUBLE g;
		for (ip=0 ; ip<size; ++ip) {
			for (iq = ip+1 ; iq<size; ++iq) {
				g = 100.0*fabs(a[ip][iq]);

#ifdef VERBOS
	if (g<10e-50) {
		LOG(5,<<"small g!"<<endl);
		if ((i>3 && (fabs(d[ip]+g) == fabs(d[ip])) && (fabs(d[iq]+g)==fabs(d[iq])))==false) {
			LOG(5,<<"g is small: "<<g<< "yes, it is not zeroed"<<endl);
			LOG(5,<<"because d[ip] is: "<<d[ip]<<" and d[iq] is: "<<d[iq]<<endl);
			LOG(5,<<"ip is: "<<ip<<" iq is: "<<iq<<endl);
		}
	}
#endif //VERBOS
				if (i>3 && (fabs(d[ip]+g) == fabs(d[ip])) && (fabs(d[iq]+g)==fabs(d[iq])) ) {
					a[ip][iq] = 0.0;
				}
				else if (fabs(a[ip][iq]) > tresh) {
					MDOUBLE h;
					MDOUBLE t;
					MDOUBLE theta;
					h = d[iq]-d[ip];
	//  assert(h!=0);
					if (fabs(h) + g == fabs(h)) {
						assert(h!=0);
						t = a[ip][iq] / h;
					}
					else {
						theta = 0.5*h/(a[ip][iq]);
						t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
						if (theta<0.0) t = -t;
					}
					MDOUBLE c,s;
					c = 1.0 / sqrt(1.0+t*t);
					s = t*c;
					MDOUBLE tau;
					tau = s/ (1.0 + c);
					h = t * a[ip][iq];
					
					d[ip] = d[ip] - t * a[ip][iq];
					d[iq] = d[iq] + t * a[ip][iq];
					a[ip][iq]=0.0;
					MDOUBLE tmp1, tmp2;
					for (j = 0; j < ip; ++j) {
					  tmp1 = a[j][ip] - s*(a[j][iq]+a[j][ip]*tau); // updating the above element of a...
					  tmp2 = a[j][iq] + s*(a[j][ip]-a[j][iq]*tau);
					  a[j][ip] = tmp1; 
					  a[j][iq] = tmp2;
					}
									
					for (j = ip+1;j<iq; ++j) {
					  tmp1 = a[ip][j] - s*(a[j][iq]+a[ip][j]*tau); // updating the above element of a..
					  tmp2 = a[j][iq] + s*(a[ip][j]-a[j][iq]*tau);
					  a[ip][j] = tmp1;
					  a[j][iq] = tmp2;
					}
					
					for (j = iq+1; j< size ; ++j) {
					  tmp1 = a[ip][j] - s*(a[iq][j]+a[ip][j]*tau); // updating the above element of a..
					  tmp2 = a[iq][j] + s*(a[ip][j]-a[iq][j]*tau);
					  a[ip][j] = tmp1;
					  a[iq][j] = tmp2;
					}
									
					for (j = 0; j< size ; ++j) {
					  tmp1 = v[j][ip] - s*(v[j][iq]+v[j][ip]*tau); // updating v
					  tmp2 = v[j][iq] + s*(v[j][ip]-v[j][iq]*tau);
					  v[j][ip] = tmp1;
					  v[j][iq] = tmp2;
					}
				} // end of "else if (fabs(a[ip][iq] > tresh)"
			} // end of for (iq = ...
		} // end of for (ip = ...
	} // end of for (i = 0; i< MaxNumberOfSweeps ; ++i) {
	vector<string> err;
	err.push_back("problems in function MyJacobi. more than MaxNumberOfSweeps were necessary.");
	errorMsg::reportError(err);
	
	return -1;
} //end of function





///////////////////////////////////////////
//Adi cahnges	//////////////////////////
/////////////////////////////////////////
MDOUBLE sign(MDOUBLE a,MDOUBLE b){ 
	return (b>0?fabs(a):-fabs(a));
}

MDOUBLE pythag(const MDOUBLE a, const MDOUBLE b){
	return sqrt(pow(a,2)+pow(b,2));
}


void houseHolder(VVdouble &mat,VVdouble &Q){
	MDOUBLE sigma=0,H,sqrtSigma,K=0,tmp;
	int c,r,j,i,n = mat.size();
	Q.resize(n);
	for(i=0;i<n;i++){
		Q.resize(n);
	}
	for (i=0;i<n;i++)
		Q[i].resize(n,0.0);
	Vdouble p,q,u;
	p.resize(n,0.0);
	q.resize(n,0.0);
	u.resize(n,0.0);
	for (i=n-1;i>1;i--){
		sigma=0; //init sigma
		K=0;	//init K
	
		for(j=0;j<i;j++)
			sigma+= mat[i][j]*mat[i][j]; //compute sigma: O(n)

		sqrtSigma = mat[i][i-1]>=0.0 ? sqrt(sigma) : -sqrt(sigma); //compute sqrt of sigma +/-

		H=sigma+mat[i][i-1]*sqrtSigma; //comute H = 0.5*|u|^2.  until here O(n)
	
		/***createing U*******/
		for(r=0;r<i;r++) {   //update vector u with row i the matrix until i; //takes  O(n)
			Q[i][r]= u[r] = mat[i][r];
			Q[r][i] = u[r]/H;
		}
		u[i-1]+=sqrtSigma; //update element (i,i-1)
		Q[i][i-1]=u[i-1];
		Q[i-1][i]=u[i-1]/H;
		for(r=i;r<n;r++) //update elemnts (i,j) =0 for j>=i.
			u[r]=0.0;
		/***********************/
		for(r=0;r<n;r++){ //compute vector p O(n^2)
			p[r]=0.0;
			for (c=0;c<i;c++)
				p[r]+=mat[r][c]*u[c]; //compute AU		
			p[r]/=H; // ->AU/H		
		}
	
		for(r=0;r<i;r++) // compure K O(n)
			K+=u[r]*p[r];
		K/=(2*H);
	//	cout<<"K is: "<<K<<endl;
		
		for(r=0;r<n;r++) //compute vector q O(n)
			q[r]=p[r]-K*u[r];
		
		for(r=0;r<=i;r++) {//update matrix O(n^2) only part of the matrix
			for(c=0;c<=i;c++)
				mat[r][c]-=q[r]*u[c]+u[r]*q[c];
		}
					
	}
	for (i=0;i<n;i++){
		for(j=0;j<i;j++){
			tmp=0;
			for(c=0;c<i;c++)
				tmp+=Q[i][c]*Q[c][j];
			for(c=0;c<i;c++)
				Q[c][j]-=tmp*Q[c][i];
		}
		Q[i][i]=1;
		for(j=0;j<i;j++)
			Q[j][i]=Q[i][j]=0.0;
	}
}

void tred2(VVdouble &a, Vdouble &d, Vdouble &e) //a = symmetricMatrix,d = diagonal,e = offdiagonal
{
	int l,k,j,i;
	MDOUBLE scale,hh,h,g,f;

	int n=d.size();
	for (i=n-1;i>0;i--) {
		l=i-1;
		h=scale=0.0;
		if (l > 0) {
			for (k=0;k<l+1;k++)
				scale += fabs(a[i][k]);
			if (scale == 0.0)
				e[i]=a[i][l];
			else {
				for (k=0;k<l+1;k++) {
					a[i][k] /= scale;
					h += a[i][k]*a[i][k];
				}
				f=a[i][l];
				g=(f >= 0.0 ? -sqrt(h) : sqrt(h));
				e[i]=scale*g;
				h -= f*g;
				a[i][l]=f-g;
				f=0.0;
				for (j=0;j<l+1;j++) {
				// Next statement can be omitted if eigenvectors not wanted
					a[j][i]=a[i][j]/h;
					g=0.0;
					for (k=0;k<j+1;k++)
						g += a[j][k]*a[i][k];
					for (k=j+1;k<l+1;k++)
						g += a[k][j]*a[i][k];
					e[j]=g/h;
					f += e[j]*a[i][j];
				}
				hh=f/(h+h);
				for (j=0;j<l+1;j++) {
					f=a[i][j];
					e[j]=g=e[j]-hh*f;
					for (k=0;k<j+1;k++)
						a[j][k] -= (f*e[k]+g*a[i][k]);
				}
			}
		} else
			e[i]=a[i][l];
		d[i]=h;
	}
	// Next statement can be omitted if eigenvectors not wanted
	d[0]=0.0;
	e[0]=0.0;
	// Contents of this loop can be omitted if eigenvectors not
	//	wanted except for statement d[i]=a[i][i];
	for (i=0;i<n;i++) {
		l=i;
		if (d[i] != 0.0) {
			for (j=0;j<l;j++) {
				g=0.0;
				for (k=0;k<l;k++)
					g += a[i][k]*a[k][j];
				for (k=0;k<l;k++)
					a[k][j] -= g*a[k][i];
			}
		}
		d[i]=a[i][i];
		a[i][i]=1.0;
		for (j=0;j<l;j++) a[j][i]=a[i][j]=0.0;
	}
}

//called if houseHolder was used - the modified QL implementation corresponding to the modified implementation of householder
/*
void QL(Vdouble &d, Vdouble &e, VVdouble &z){
	int m,l,iter,i,k;
	MDOUBLE s,r,p,g,f,dd,c,b;
		
	int n=d.size();
//*	for (i=1;i<n;i++) e[i-1]=e[i];
//*	e[n-1]=0.0;
//*	e.push_back(0);//since in my algorithm I return an n-1 sized e
	for (l=0;l<n;l++) {
		iter=0;
		do {
			for (m=l;m<n-1;m++) {
				dd=fabs(d[m])+fabs(d[m+1]);
				if (fabs(e[m])+dd == dd) break;
			}
			if (m != l) {
				if (iter++ == 30) errorMsg::reportError("Too many iterations in QL");
				g=(d[l+1]-d[l])/(2.0*e[l]);
				r=pythag(g,1.0);
				g=d[m]-d[l]+e[l]/(g+sign(r,g));
				s=c=1.0;
				p=0.0;
				for (i=m-1;i>=l;i--) {
					f=s*e[i];
					b=c*e[i];
					e[i+1]=(r=pythag(f,g));
					if (r == 0.0) {
						d[i+1] -= p;
						e[m]=0.0;
						break;
					}
					s=f/r;
					c=g/r;
					g=d[i+1]-p;
					r=(d[i]-g)*s+2.0*c*b;
					d[i+1]=g+(p=s*r);
					g=c*r-b;
					// Next loop can be omitted if eigenvectors not wanted
					for (k=0;k<n;k++) {
						f=z[k][i+1];
						z[k][i+1]=s*z[k][i]+c*f;
						z[k][i]=c*z[k][i]-s*f;
					}
				}
				if (r == 0.0 && i >= l) continue;
				d[l] -= p;
				e[l]=g;
				e[m]=0.0;
			}
		} while (m != l);
	}
}
*/


//called if tred2 was used - the original QL implementation from numerical recepies
void QL(Vdouble &d, Vdouble &e, VVdouble &z){
	int m,l,iter,i,k;
	MDOUBLE s,r,p,g,f,dd,c,b;

	int n=d.size();
	for(i=1;i<n;i++){
		e[i-1]=e[i];
	}
	e[n-1]=0.0;
	for(l=0;l<n;l++){
		iter=0;
		do {
			for(m=l;m<n-1;m++){
				dd=fabs(d[m])+fabs(d[m+1]);
				if(fabs(e[m])+dd == dd) break;
			}
			if(m!=l){
				if(iter++==30){
					errorMsg::reportError("too many iteration in QL");
				}
				g=(d[l+1]-d[l])/(2.0*e[l]);
				r=pythag(g,1.0);
				g=d[m]-d[l]+e[l]/(g+sign(r,g));
				s=c=1.0;
				p=0.0;
				for(i=m-1;i>=l;i--){
					f=s*e[i];
					b=c*e[i];
					e[i+1]=(r=pythag(f,g));
					if(r==0.0){
						d[i+1]-=p;
						e[m]=0.0;
						break;
					}
					s=f/r;
					c=g/r;
					g=d[i+1]-p;
					r=(d[i]-g)*s+2.0*c*b;
					d[i+1]=g+(p=s*r);
					g=c*r-b;
					for(k=0;k<n;k++){
						f=z[k][i+1];
						z[k][i+1]=s*z[k][i]+c*f;
						z[k][i]=c*z[k][i]-s*f;
					}
				}
				if(r==0 && i>=l) continue;
				d[l]-=p;
				e[l]=g;
				e[m]=0.0;
			}
		}
		while(m!=l);
	}
}



/************************************************************************/
//diaganol will be eigen values and fill matrix of eigen vectors.                                                                                   */
/************************************************************************/

//A modified implementation for eigen analysis, using the house holder function.
/*
void computeEigenSystem(VVdouble &symmetricMatrix,VVdouble &eigenVectros,Vdouble &diagonal){

	houseHolder(symmetricMatrix,eigenVectros);

	Vdouble offdiagonal;
	offdiagonal.resize(symmetricMatrix.size());
	for (int i=0; i<symmetricMatrix.size(); i++){
		diagonal[i]=symmetricMatrix[i][i];
	}
	for (int i2=0; i2<symmetricMatrix.size()-1; i2++){
		offdiagonal[i2]=symmetricMatrix[i2+1][i2];
	}
	
	QL(diagonal,offdiagonal,eigenVectros);
	return;
}
*/

//Uses original implementation of tred2 function for eigen analysis, copied from numerical recepies p474. 
void computeEigenSystem(VVdouble &symmetricMatrix,VVdouble &eigenVectros,Vdouble &diagonal){
	
	Vdouble offdiagonal;
	offdiagonal.resize(symmetricMatrix.size());

	tred2(symmetricMatrix,diagonal,offdiagonal);

	eigenVectros = symmetricMatrix;

	QL(diagonal,offdiagonal,eigenVectros);

	return;
}


// the following two functions used for Kolomogorov-Smirnoff test
MDOUBLE performKSTest(const uniformDistribution& empiricalDist, Vdouble& observedDist)
{
	MDOUBLE pVal = 0.0;
	MDOUBLE distance = 0.0;

	int j;
	MDOUBLE dt,en,fn,fo = 0.0;

	int n = observedDist.size();
	sort(observedDist.begin(),observedDist.end());
	en = n;
	MDOUBLE cdfObserved = 0.0;
	for(j = 0; j < n; ++j){
		cdfObserved+=observedDist[j];
		fn = (j+1)/en;
		dt = max(fabs(fo-cdfObserved),fabs(fn-cdfObserved));
		if(dt > distance)
			distance = dt;
		fo = fn;
	}
	en = sqrt(en);
	pVal = computeProbForKS((en+0.12+0.11/en)*distance);
	return pVal;
}

// function called only by performKSTest
MDOUBLE computeProbForKS (const MDOUBLE QsParam)
{
	const MDOUBLE EPS1 = 1.0e-6,EPS2 = 1.0e-16;
	int j;
	MDOUBLE a2,fac = 2.0, sum = 0.0, term, termbf = 0.0;

	a2 = -2.0*QsParam*QsParam;
	for(j = 1; j <= 100; ++j){
		term = fac*exp(a2*j*j);
		sum += term;
		if(fabs(term) <= EPS1*termbf || fabs(term) <= EPS2*sum)
			return sum;
		fac = -fac;
		termbf = fabs(term);
	}
	return 1.0; //get here only by failing to converge
}