File: optGammaMixtureEM.cpp

package info (click to toggle)
fastml 3.11-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,772 kB
  • sloc: cpp: 48,522; perl: 3,588; ansic: 819; makefile: 386; python: 83; sh: 55
file content (291 lines) | stat: -rw-r--r-- 10,321 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#include "optGammaMixtureEM.h"
#include "likelihoodComputation.h"
#include "numRec.h"
#include "uniDistribution.h"

#include <fstream>
#include <algorithm>
#include <ctime>
using namespace std;
using namespace likelihoodComputation;

optGammaMixtureEM::optGammaMixtureEM(const stochasticProcess& cur_sp, const sequenceContainer& sc, const tree& inTree)
{
	_pSc = &sc;
	_pTree = &inTree;
	_pSp = new stochasticProcess(cur_sp); 
}

optGammaMixtureEM::~optGammaMixtureEM()
{
	if (_pSp != NULL)
	{
		delete _pSp;
		_pSp = NULL;
	}
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////
//findBestParamManyStarts: Finds the best gammaMixture from many starting points.
//The function starts form few starting points. 
//For each point it tries to optimize the likellihood doing only a small number of iterations.
//It then picks the best points (highest likelihood) and continue the maximization for these points only.
//The best gammaMixture is stored in _sp and the best likelihood is returned.
//input Parameters:
//startPointsNum = the number of starting points.
//bestStartsNum  = the number of best points to continue with the full optimization.
//startIter      = the number of iterations to perform with all starting points.
//maxIterations  = the maximum number of iterations to continue with the best points
//epsilon        = for determining convergence in the maximization process. 
MDOUBLE optGammaMixtureEM::findBestParamManyStarts(const int startPointsNum, const int bestStartsNum, const int startIter, const int maxIterations, const MDOUBLE epsilon, const MDOUBLE epsilomQopt, ofstream* pOutF)
{
	vector<mixtureDistribution> distVec;
	Vdouble likelihoodVec(startPointsNum);
	mixtureDistribution * pMixture = static_cast<mixtureDistribution*>(_pSp->distr());
	//create starting distributions
	int i;
	for (i = 0; i < startPointsNum; ++i)
	{
		//the first distribution will be the current one
		if (i == 0)
			distVec.push_back(*pMixture); 
		else
			distVec.push_back(mixtureDistribution(pMixture->getComponentsNum(), pMixture->categoriesForOneComponent(), LAGUERRE, 15, 15)); 
	}

	//make a small number of iterations for all random starts 
	for (i = 0; i < distVec.size(); ++i)
	{
		likelihoodVec[i] = optimizeParam(&distVec[i], startIter, epsilon, epsilomQopt, pOutF);
	}

	//sort results and make full optimization only on the best starts
	Vdouble sortedL = likelihoodVec;
	sort(sortedL.begin(),sortedL.end());
	MDOUBLE threshold = sortedL[sortedL.size()- bestStartsNum];
	MDOUBLE bestL = sortedL[0];
	int bestDistNum = 0;
	for (i = 0; i < distVec.size(); ++i)
	{
		if (likelihoodVec[i] >= threshold) 
		{
			MDOUBLE newL = optimizeParam(&distVec[i], maxIterations, epsilon, epsilomQopt, pOutF);
			if (newL > bestL)
			{
				bestL = newL;
				bestDistNum = i;
			}
		}
	}
	_pSp->setDistribution(&distVec[bestDistNum]);
	distVec.clear();
	return bestL;
}


MDOUBLE optGammaMixtureEM::optimizeParam(mixtureDistribution* pInDistribution, const int maxIterations, const MDOUBLE epsilon, const MDOUBLE epsilomQopt, ofstream* pOutF)
{
	stochasticProcess inSp(pInDistribution, _pSp->getPijAccelerator());
	MDOUBLE curL = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(*_pTree, *_pSc, inSp, NULL);

	/////compute piHomPos as in getTreeLikelihoodAllPosAlphTheSame
	//computePijGam pi;
	//pi.fillPij(*_pTree, inSp);
	//MDOUBLE res =0;
	//doubleRep LofPos;
	//int k;
	//for (k=0; k < _pSc->seqLen(); ++k) 
	//{
	//	doubleRep tmp=0;
	//	for (int i=0; i < inSp.categories();++i) 
	//	{
	//		tmp += getLofPos(k, *_pTree, *_pSc, pi[i], inSp)* inSp.ratesProb(i);
	//		/*MDOUBLE Pr = pDist->ratesProb(cat) * likelihoodComputation::getLofPos(pos, *_pTree, *_pSc, cpgVec[comp][cat], spVec[comp]); */
	//	}
	//	LofPos = tmp;
	//	res += log(LofPos);
	//}
	//




	
	
	//int componentNum = pInDistribution->getComponentsNum();
	////compute Pij for each component
	//vector<computePijGam> cpgVec(componentNum);
	//vector<stochasticProcess> spVec;
	//for (int comp = 0; comp < componentNum; ++comp) {
	//	//create a local sp so to compute likelihoods of this component only
	//	stochasticProcess compSp(pInDistribution->getComponent(comp), _pSp->getPijAccelerator());
	//	cpgVec[comp].fillPij(*_pTree, compSp);
	//	spVec.push_back(compSp);
	//}



	//for (int pos = 0; pos < _pSc->seqLen(); ++pos)
	//{
	//	int comp;
	//	for (comp = 0; comp < componentNum; ++comp)
	//	{
	//		const generalGammaDistribution* pDist = pInDistribution->getComponent(comp);
	//		for (int cat=0; cat < pDist->categories(); ++cat) 
	//		{
	//			doubleRep LofPos = likelihoodComputation::getLofPos(pos, *_pTree, *_pSc, cpgVec[comp][cat], spVec[comp]); 
	//			L2 += log(LofPos);
	//		}
	//	}
	//}


	
	if (maxIterations == 0)
	{
		return curL;
		LOG(4,<<endl<<endl<<"starting Gamma Mixture EM optimization..."<<endl);
		printIter(inSp, 0, curL);
	}

	MDOUBLE newL = curL;
	int it;
	for (it = 0; it < maxIterations; ++it)
	{
		stochasticProcess oldSp(inSp);
		maximizeGammaParam(&inSp, epsilomQopt);
		newL = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(*_pTree, *_pSc, inSp, NULL);
		if (newL < curL + epsilon)
		{
			//the improvemnt in Likelihood is smaller than epsilon
			if (newL < curL)
			{	//ERROR - L went Down!
				cerr<<"likelihood went down!"<<endl<<"oldL = "<<curL<<" newL= "<<newL<<" Diff= "<<newL-curL<<endl;
				if (pOutF != NULL) *pOutF <<"likelihood went down!"<<endl<<"oldL = "<<curL<<" newL= "<<newL<<endl;
				*pInDistribution = *(static_cast<mixtureDistribution*>(oldSp.distr()));
				if (pOutF != NULL) *pOutF <<"after Gamma Mixture EM optimization..."<<endl;
				printIter(inSp, it, curL);
				return curL;
			}
			else
			{
				cerr<<"converged!"<<endl; 
				*pInDistribution = *(static_cast<mixtureDistribution*>(inSp.distr()));
				if (pOutF != NULL) *pOutF <<"after Gamma Mixture EM optimization..."<<endl;
				printIter(inSp, it, newL);
				return newL;
			}
		}
		cerr << "iter " << it <<": cur likelihood= " << curL <<" new likelihood= " << newL <<endl;
		curL = newL;
	}
	
	*pInDistribution = *(static_cast<mixtureDistribution*>(inSp.distr()));
	if (pOutF != NULL) *pOutF <<"after Gamma Mixture EM optimization..."<<endl;
	printIter(inSp, it, newL);
	return newL;
}


void optGammaMixtureEM::maximizeGammaParam(stochasticProcess* pNewSp, MDOUBLE accuracyRtbis)
{
	suffStatGammaMixture stats(*pNewSp, *_pSc, *_pTree);
	stats.computeStatistics();
	//cerr << "Q BEFORE IS: " << stats.computeQ()<<endl;
	maximizeGammaParam(stats, pNewSp, accuracyRtbis);
	//cerr << "Q AFTER IS: " << stats.computeQ()<<endl;
}

void optGammaMixtureEM::maximizeGammaParam(const suffStatGammaMixture & stats,
										   stochasticProcess* pNewSp, MDOUBLE accuracyRtbis)
{
	MDOUBLE upperBoundAlpha = 15.0;
	mixtureDistribution * pMixture = static_cast<mixtureDistribution*>(pNewSp->distr());
	int numComponents = pMixture->getComponentsNum();
	Vdouble compProb(numComponents), alphaVec(numComponents), betaVec(numComponents);
	for (int k = 0; k < numComponents; ++k)
	{
		alphaVec[k] = findBestAlpha(stats, k, accuracyRtbis, upperBoundAlpha);
		betaVec[k] = alphaVec[k] * (stats.getMk(k) / stats.getAk(k)); 
		compProb[k] = stats.getMk(k) / _pSc->seqLen();
	}
	pMixture->setMixtureParameters(alphaVec, betaVec, compProb);
}

void optGammaMixtureEM::printIter(const stochasticProcess& inSp, const int it, const MDOUBLE curL)  
{
	LOG(4, << "iter " << it <<": cur likelihood= " << curL <<endl);
	mixtureDistribution * pMixture = static_cast<mixtureDistribution*>(inSp.distr());
	for (int k = 0; k < pMixture->getComponentsNum(); ++k)
	{
		LOG(4, << "comp="<<k<<" Alp/Beta= "<<pMixture->getAlpha(k)/pMixture->getBeta(k)<<" alpha= "<<pMixture->getAlpha(k) << " beta= " <<pMixture->getBeta(k)<<" Prob= "<<pMixture->getComponentProb(k)<<endl);  
	}
}


//findBestAlpha: this function finds the alpha which is the root of the function C_evalAlphaEM().
//BUT - if there is no root in the range (lowerBoundAlpha, upperBoundAlpha) 
//or - the root is higher than upperBoundAlpha - the function returns upperBoundAlpha
MDOUBLE optGammaMixtureEM::findBestAlpha(const suffStatGammaMixture& stats, const int compNum, const MDOUBLE accuracyRtbis, const MDOUBLE upperBoundAlpha) const 
{
	MDOUBLE res = upperBoundAlpha;
	MDOUBLE lowerBoundAlpha = MINIMUM_ALPHA_PARAM;
	MDOUBLE upperRange = upperBoundAlpha;
	MDOUBLE lowerRange = lowerBoundAlpha;	
	bool haveRoot = zbrac(C_evalAlphaEM(stats, compNum), lowerRange, upperRange);
	if (haveRoot == true)
		res = rtbis(C_evalAlphaEM(stats, compNum), lowerRange, upperRange, accuracyRtbis); ;
	if (res > upperBoundAlpha)
		res = upperBoundAlpha;
	else if (res < lowerBoundAlpha)
		res = lowerBoundAlpha;
	return res;
}


void optGammaMixtureEM::checkEntropy(stochasticProcess & oldSp, stochasticProcess & newSp)
{
	//the entropy is 
	//sigma_r P(r|D,oldSp)*log(P(r|D,oldSp) / P(r|D,newSp))
	//VVdouble posteriorBefore,posteriorAfter ; 
	//likelihoodComputation::getPosteriorOfRates(*_pTree, *_pSc, oldSp, posteriorBefore, NULL);
	//likelihoodComputation::getPosteriorOfRates(*_pTree, *_pSc, newSp, posteriorAfter, NULL);


	//MDOUBLE entropyAll = 0.0;
	//MDOUBLE secondTerm= 0.0;
	//for (int pos = 0; pos < _pSc->seqLen(); ++pos)
	//{
	//	MDOUBLE entropyPos = 0.0;	
	//	for (int cat = 0; cat < oldSp.categories(); ++cat)
	//	{
	//		entropyPos += posteriorBefore[pos][cat] * log(posteriorBefore[pos][cat] / posteriorAfter[pos][cat]);
	//		secondTerm += posteriorBefore[pos][cat] * log(posteriorAfter[pos][cat]);
	//	}
	//	entropyAll += entropyPos;
	//	//cerr <<"Pos Entropy = "<<entropyPos<<endl;
	//}
	//cerr <<endl<<endl<<endl;
	//cerr <<"All Entropy = "<<entropyAll<<endl;


	//calculating Q
	//MDOUBLE QAll = 0.0;
	//for (int pos = 0; pos < _pSc->seqLen(); ++pos)
	//{
	//	MDOUBLE QPos = 0.0;	
	//	for (int cat = 0; cat < oldSp.categories(); ++cat)
	//	{
	//		stochasticProcess localSp(&uniDistribution(), newSp.getPijAccelerator()); 
	//		MDOUBLE rate = newSp.rates(cat);
	//		MDOUBLE L_after = likelihoodComputation::getLofPos(pos, *_pTree, *_pSc, localSp, rate);
	//		QPos += posteriorBefore[pos][cat] * log(L_after * newSp.ratesProb(cat));
	//	}
	//	QAll += QPos;
	//	//cerr <<"Pos Q = "<<QPos<<endl;
	//}
	//cerr <<endl<<endl<<endl;
	//cerr <<"Q ALL= "<<QAll<<endl;
	//cerr <<"secondTerm = "<<secondTerm<<endl;
	
}