1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
// $Id: posteriorDistance.cpp 5883 2009-02-06 10:42:11Z privmane $
#include "posteriorDistance.h"
#include "numRec.h"
#include "countTableComponent.h"
#include "likeDist.h"
#include "uniDistribution.h"
#include "someUtil.h"
#include "jcDistance.h"
#include <cmath>
class C_eval_gammaMLDistancesPosterior_d{
private:
const stochasticProcess& _sp;
const sequence& _s1;
const sequence& _s2;
const Vdouble* _weights;
const VVdoubleRep& _posteriorProb; // pos, rate
public:
C_eval_gammaMLDistancesPosterior_d(const stochasticProcess& sp,
const sequence& s1,
const sequence& s2,
const VVdoubleRep& posteriorProb,
const Vdouble * weights)
: _sp(sp),
_s1(s1),
_s2(s2),
_weights(weights),
_posteriorProb(posteriorProb)
{};
MDOUBLE operator() (MDOUBLE dist) {
MDOUBLE sumL=0.0;
doubleRep posLikelihood = 0.0;
MDOUBLE posLikelihood_d = 0.0;
for (int pos=0; pos < _s1.seqLen(); ++pos){
if (_s1.isUnknown(pos) && _s2.isUnknown(pos)) continue; // the case of two unknowns
posLikelihood = 0.0;
posLikelihood_d = 0.0;
if (_s1.isUnknown(pos) && _s2.isSpecific(pos)) {
// this is the more complicated case, where s1 = ?, s2 = specific
posLikelihood = _sp.freq(_s2[pos]);
posLikelihood_d =0.0;
}
else if (_s2.isUnknown(pos) && _s1.isSpecific(pos)) {
posLikelihood = _sp.freq(_s1[pos]);
posLikelihood_d =0.0;
} else {
for (int rateCategor = 0; rateCategor<_sp.categories(); ++rateCategor) {
MDOUBLE rate = _sp.rates(rateCategor);
MDOUBLE pij= 0.0;
MDOUBLE dpij=0.0;
if (_s1.isSpecific(pos) && _s2.isSpecific(pos)) {//simple case, where AA i is changing to AA j
pij= _sp.Pij_t(_s1[pos],_s2[pos],dist*rate);
dpij= _sp.dPij_dt(_s1[pos],_s2[pos],dist*rate)*rate;
doubleRep tmp = _sp.freq(_s1[pos])*_posteriorProb[pos][rateCategor];
posLikelihood += pij *tmp;
posLikelihood_d += dpij*convert(tmp);
}
else {// this is the most complicated case, when you have combinations of letters,
// for example B in one sequence and ? in the other.
for (int iS1 =0; iS1< _sp.alphabetSize(); ++iS1) {
for (int iS2 =0; iS2< _sp.alphabetSize(); ++iS2) {
if ((_s1.getAlphabet()->relations(_s1[pos],iS1)) &&
(_s2.getAlphabet()->relations(_s2[pos],iS2))) {
doubleRep exp = _sp.freq(iS1)*_posteriorProb[pos][rateCategor];;
posLikelihood += exp* _sp.Pij_t(iS1,iS2,dist*rate);
posLikelihood_d += convert(exp) * _sp.dPij_dt(iS1,iS2,dist*rate)*rate;
}
}
}
}
}// end of for rate categories
}
assert(posLikelihood!=0.0);
sumL += posLikelihood_d/convert(posLikelihood)*(_weights ? (*_weights)[pos]:1.0);
}
return -sumL;
};
};
class C_eval_gammaMLDistancesPosterior{
private:
const stochasticProcess& _sp;
const sequence& _s1;
const sequence& _s2;
const Vdouble* _weights;
const VVdoubleRep& _posteriorProb; // pos, rate
public:
C_eval_gammaMLDistancesPosterior(const stochasticProcess& sp,
const sequence& s1,
const sequence& s2,
const VVdoubleRep& posteriorProb,
const Vdouble * weights): _sp(sp),
_s1(s1),
_s2(s2),
_weights(weights),
_posteriorProb(posteriorProb)
{};
MDOUBLE operator() (MDOUBLE dist) {
/*DEBUG LOG(9,<<"C_eval_gammaMLDistancesPosterior::operator():"); LOGDO(9,printTime(myLog::LogFile())); LOG(9,<<": dist = "<<dist<<endl); DEBUG*/
MDOUBLE sumL=0.0;
doubleRep posLikelihood = 0.0;
for (int pos=0; pos < _s1.seqLen(); ++pos){
/*DEBUG LOG(9,<<"C_eval_gammaMLDistancesPosterior::operator():"); LOGDO(9,printTime(myLog::LogFile())); LOG(9,<<": pos = "<<pos<<endl); DEBUG*/
if (_s1.isUnknown(pos) && _s2.isUnknown(pos)) continue; // the case of two unknowns
/*DEBUG LOG(9,<<"_posteriorProb ="<<_posteriorProb[pos]<<endl); DEBUG*/
posLikelihood = 0.0;
/*DEBUG LOG(9,<<"posLikelihood = "<<posLikelihood<<endl); DEBUG*/
if (_s1.isUnknown(pos) && _s2.isSpecific(pos)) {
// this is the more complicated case, where s1 = ?, s2 = specific
posLikelihood = _sp.freq(_s2[pos]);
}
else if (_s2.isUnknown(pos) && _s1.isSpecific(pos)) {
posLikelihood = _sp.freq(_s1[pos]);
} else {
for (int rateCategor = 0; rateCategor<_sp.categories(); ++rateCategor) {
MDOUBLE rate = _sp.rates(rateCategor);
/*DEBUG LOG(9,<<"rate = "<<rate<<endl); DEBUG*/
MDOUBLE pij= 0.0;
if (_s1.isSpecific(pos) && _s2.isSpecific(pos)) {//simple case, where AA i is changing to AA j
/*DEBUG LOG(9,<<"Both are specific"<<endl); DEBUG*/
pij= _sp.Pij_t(_s1[pos],_s2[pos],dist*rate);
doubleRep exp = _sp.freq(_s1[pos])*_posteriorProb[pos][rateCategor];
/*DEBUG LOG(9,<<"exp = "<<exp<<endl); DEBUG*/
posLikelihood += pij *exp;
/*DEBUG LOG(9,<<"posLikelihood = "<<posLikelihood<<endl); DEBUG*/
}
else {// this is the most complicated case, when you have combinations of letters,
// for example B in one sequence and ? in the other.
/*DEBUG LOG(9,<<"One or both are non-specific"<<endl); DEBUG*/
for (int iS1 =0; iS1< _sp.alphabetSize(); ++iS1) {
for (int iS2 =0; iS2< _sp.alphabetSize(); ++iS2) {
if ((_s1.getAlphabet()->relations(_s1[pos],iS1)) &&
(_s2.getAlphabet()->relations(_s2[pos],iS2))) {
doubleRep exp = _sp.freq(iS1)*_posteriorProb[pos][rateCategor];
posLikelihood += exp* _sp.Pij_t(iS1,iS2,dist*rate);
}
}
}
/*DEBUG LOG(9,<<"posLikelihood = "<<posLikelihood<<endl); DEBUG*/
}
}// end of for rate categories
}
assert(posLikelihood!=0.0);
sumL += log(posLikelihood)*(_weights ? (*_weights)[pos]:1);
}
/*DEBUG LOG(9,<<"C_eval_gammaMLDistancesPosterior::operator():"); LOGDO(9,printTime(myLog::LogFile())); LOG(9,<<": returning "<<(-sumL)<<endl); DEBUG*/
return -sumL;
};
};
posteriorDistance::posteriorDistance(const stochasticProcess & sp,
const VVdoubleRep & posteriorProb,
const MDOUBLE toll,
const MDOUBLE maxPairwiseDistance)
:
likeDist(sp,toll,maxPairwiseDistance),_posteriorProb(posteriorProb)
{}
posteriorDistance::posteriorDistance(stochasticProcess & sp,
const VVdoubleRep & posteriorProb,
const MDOUBLE toll,
const MDOUBLE maxPairwiseDistance)
:
likeDist(sp,toll,maxPairwiseDistance),_posteriorProb(posteriorProb)
{}
posteriorDistance::posteriorDistance(const stochasticProcess & sp,
const MDOUBLE toll,
const MDOUBLE maxPairwiseDistance)
:
likeDist(sp,toll,maxPairwiseDistance),_posteriorProb(0)
{}
posteriorDistance::posteriorDistance(stochasticProcess & sp,
const MDOUBLE toll,
const MDOUBLE maxPairwiseDistance)
:
likeDist(sp,toll,maxPairwiseDistance),_posteriorProb(0)
{}
posteriorDistance::posteriorDistance(const posteriorDistance& other):
likeDist(static_cast<likeDist>(other)), _posteriorProb(other._posteriorProb)
{}
// distance is computed based on the posterior probability
const MDOUBLE posteriorDistance::giveDistance(const sequence& s1,
const sequence& s2,
const Vdouble * weights,
MDOUBLE* score) const
{
/*DEBUG LOG(9,<<"posteriorDistance::giveDistance - start"<<endl); LOGDO(9,printTime(myLog::LogFile())); DEBUG*/
const MDOUBLE ax=0, cx=_maxPairwiseDistance;
MDOUBLE bx=_jcDist.giveDistance(s1,s2,weights,score)/*=1.0*/;
if (!(bx==bx)) bx = 1.0;
if (!(bx>0.0)) bx = 0.000001;
MDOUBLE dist=-1.0;
MDOUBLE resL = -dbrent(ax,bx,cx,
C_eval_gammaMLDistancesPosterior(_sp,s1,s2,_posteriorProb,weights),
C_eval_gammaMLDistancesPosterior_d(_sp,s1,s2,_posteriorProb,weights),
_toll,
&dist);
if (score) *score = resL;
return dist;
}
// =============================
// OBSOLETE: this function was moved to pairwiseGammaDistance.cpp
class C_evalAlphaForPairOfSeq{
private:
const countTableComponentGam& _ctc;
stochasticProcess& _sp;
const MDOUBLE _branchL;
public:
C_evalAlphaForPairOfSeq(const countTableComponentGam& ctc,
const MDOUBLE branchL,
stochasticProcess& sp):_ctc(ctc), _sp(sp), _branchL(branchL) {};
MDOUBLE operator() (MDOUBLE alpha) {
(static_cast<gammaDistribution*>(_sp.distr()))->setAlpha(alpha);
C_evalLikeDist cev(_ctc,_sp);
MDOUBLE L=cev(_branchL);
LOG(10,<<"check alpha="<<alpha<<", bl="<<_branchL<<" gives "<<L<<endl);
return L;
};
};
// OBSOLETE: this function was moved to pairwiseGammaDistance.cpp
// returns the best alpha.
MDOUBLE optimizeAlphaFixedDist(stochasticProcess & sp,
const countTableComponentGam & ctc,
const MDOUBLE branchL,
const vector<MDOUBLE> * weights,
MDOUBLE* score=NULL){ // changes sp.
MDOUBLE bestA=0.0;
MDOUBLE bestQ=0.0;
const MDOUBLE upperBoundOnAlpha = 15.0;
const MDOUBLE epsilonAlphaOptimization = 0.01;
const MDOUBLE cx=upperBoundOnAlpha;// left, midle, right limit on alpha
const MDOUBLE bx=cx*0.3;
const MDOUBLE ax=0.0;
bestQ = -brent(ax,bx,cx,
C_evalAlphaForPairOfSeq(ctc,branchL,sp),
epsilonAlphaOptimization,
&bestA);
(static_cast<gammaDistribution*>(sp.distr()))->setAlpha(bestA);
if (score) *score = bestQ;
return bestA;
}
// OBSOLETE: this function was moved to pairwiseGammaDistance.cpp
class C_eval_gammaMLAlpha{
private:
const stochasticProcess& _sp;
const sequence& _s1;
const sequence& _s2;
const MDOUBLE _distance;
const Vdouble* _weights;
// const VVdoubleRep& _posteriorProb; // pos, rate
public:
C_eval_gammaMLAlpha(const stochasticProcess& sp,
const sequence& s1,
const sequence& s2,
const MDOUBLE distance,
// const VVdoubleRep& posteriorProb,
const Vdouble * weights): _sp(sp),
_s1(s1),
_s2(s2),
_distance(distance),
_weights(weights)
// _posteriorProb(posteriorProb)
{};
// this cast is required as the distribution within the
// stochasticProcess is kept as the parent "distribution" class that
// knows nothing of Alpha
void setAlpha(MDOUBLE alpha) {
(static_cast<gammaDistribution*>(_sp.distr()))->setAlpha(alpha);
}
MDOUBLE operator() (MDOUBLE alpha) {
setAlpha(alpha);
MDOUBLE likelihood = likeDist::evalLikelihoodForDistance(_sp,_s1,_s2,_distance,_weights);
LOG(11,<<"check alpha="<<alpha<<", bl="<<_distance<<" gives "<<likelihood<<endl);
return -likelihood;
};
} ;
// OBSOLETE: this function was moved to pairwiseGammaDistance.cpp
// returns the best alpha.
MDOUBLE optimizeAlphaFixedDist( const sequence& s1,
const sequence& s2,
stochasticProcess & sp,
const MDOUBLE branchL,
const vector<MDOUBLE> * weights,
MDOUBLE* score=NULL){ // changes sp.
MDOUBLE bestA=0.0;
MDOUBLE bestQ=0.0;
const MDOUBLE upperBoundOnAlpha = 15.0;
const MDOUBLE epsilonAlphaOptimization = 0.01;
const MDOUBLE cx=upperBoundOnAlpha;// left, midle, right limit on alpha
const MDOUBLE bx=cx*0.3;
const MDOUBLE ax=0.0;
bestQ = -brent(ax,bx,cx,
C_eval_gammaMLAlpha(sp,s1,s2,branchL,weights),
epsilonAlphaOptimization,
&bestA);
(static_cast<gammaDistribution*>(sp.distr()))->setAlpha(bestA);
if (score) *score = bestQ;
return bestA;
}
MDOUBLE posteriorDistance::giveInitialGuessOfDistance(
const sequence& s1,
const sequence& s2,
const vector<MDOUBLE> * weights,
MDOUBLE* score) const {
uniDistribution ud;
stochasticProcess uniSp(&ud,_sp.getPijAccelerator());
likeDist ld(uniSp);
return (ld.giveDistance(s1,s2,weights,score));
}
// OBSOLETE? What's the difference between this function and giveDistanceOptAlphaForPairOfSequences???
MDOUBLE posteriorDistance::giveDistanceOptAlphaForEachPairOfSequences( const sequence& s1,
const sequence& s2,
const vector<MDOUBLE> * weights,
MDOUBLE* score,
MDOUBLE* alpha) const {
MDOUBLE toll = 0.0001;
MDOUBLE resL = 0.0;
MDOUBLE resQ = 0.0;
MDOUBLE currentDistance = giveInitialGuessOfDistance(s1,s2,weights,&resL);
countTableComponentGam ctc; // from technical reasons.
ctc.countTableComponentAllocatePlace(_sp.alphabetSize(),_sp.categories());
stochasticProcess tmpSp(_sp);
for (int z=0; z<s1.seqLen(); ++z) {
for (int j=0; j < tmpSp.categories(); ++j) {
ctc.addToCounts(s1[z],s2[z],j,weights?(*weights)[z]:tmpSp.ratesProb(j));
}
}
const int maxIter = 30;
MDOUBLE newDist = 0.0;
MDOUBLE lastBestAlpha = 0.0;
for (int i=0; i < maxIter; ++i) {
lastBestAlpha = optimizeAlphaFixedDist(tmpSp,ctc,currentDistance,weights,&resL); // changes sp.
(static_cast<gammaDistribution*>(tmpSp.distr()))->setAlpha(lastBestAlpha);
LOG(8,<<"lastBestAlpha="<<lastBestAlpha<<"("<<(static_cast<gammaDistribution*>(tmpSp.distr()))->getAlpha()<<")"<<"\t L="<<resL<<"\t");
likeDist tmpld(tmpSp); // we must create a new ld, that will include the stochastic process with the new alpha
newDist = tmpld.giveDistance(ctc,resQ);
LOG(8,<<"dist="<<newDist<<endl);
if (fabs(newDist-currentDistance)<toll) break;
currentDistance = newDist;
}
if (score) *score = resL;
if (alpha) *alpha = lastBestAlpha;
assert (newDist >=0);
return newDist;
}
// OBSOLETE: this function was moved to pairwiseGammaDistance.cpp
MDOUBLE posteriorDistance::giveDistanceOptAlphaForPairOfSequences( const sequence& s1,
const sequence& s2,
const vector<MDOUBLE> * weights,
MDOUBLE* score,
MDOUBLE* alpha) const {
MDOUBLE toll = 0.0001;
MDOUBLE resL = 0.0;
MDOUBLE currentDistance = giveInitialGuessOfDistance(s1,s2,weights,&resL);
countTableComponentGam ctc; // from technical reasons.
stochasticProcess tmpSp(_sp);
const int maxIter = 30;
MDOUBLE newDist = 0.0;
MDOUBLE lastBestAlpha = 0.0;
for (int i=0; i < maxIter; ++i) {
lastBestAlpha = optimizeAlphaFixedDist(s1, s2, tmpSp, currentDistance, weights, &resL); // changes sp.
LOG(8,<<"lastBestAlpha="<<lastBestAlpha<<"("<<"\t L="<<resL<<"\t");
likeDist tmpld(tmpSp); // we must create a new ld, that will include the stochastic process with the new alpha
newDist = tmpld.giveDistance(s1, s2, weights, &resL);
LOG(8,<<"dist="<<newDist<<"(L="<<resL<<")"<<endl);
if (fabs(newDist-currentDistance)<toll) break;
currentDistance = newDist;
}
if (score) *score = resL;
if (alpha) *alpha = lastBestAlpha;
assert (newDist >=0);
return newDist;
}
|