1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
#include "simulateRateShiftJumps.h"
#include "talRandom.h"
#include "someUtil.h"
#include "replacementModelSSRV.h"
#include "generalGammaDistribution.h"
#include <algorithm>
//TO DO:
//1. input: a specific node vector and not a tree
//2. all instances of syn are converted to acc
//3. function of mulAlphabet: compareCategories, static function which also receives alphabetSize
simulateRateShiftJumps::simulateRateShiftJumps(const tree& inTree, const stochasticProcess& sp, const int alphabetSize)
: simulateJumpsAbstract(inTree,sp,alphabetSize)
{
// note: ontainging the number of rate categories, probably an easier way to do this:
replacementModelSSRV* pMulRM = static_cast<replacementModelSSRV*>(sp.getPijAccelerator()->getReplacementModel());
generalGammaDistribution* generalGammaDist = static_cast<generalGammaDistribution*>(pMulRM->getDistribution());
_numRateCategories = generalGammaDist->categories();
if (alphabetSize % _numRateCategories != 0) {
errorMsg::reportError("error in simulateRateShiftJumps::simulateRateShiftJumps, alphabetSize must divide by number of rate categories");
}
_baseAlphabetSize = alphabetSize / _numRateCategories;
}
simulateRateShiftJumps::~simulateRateShiftJumps()
{
}
//runSimulation: do the actual simulation. iterNum specifies the number of iterations starting from each state
void simulateRateShiftJumps::runSimulation(int iterNum, vector <tree::nodeP> inputNodes)
{
init(inputNodes);
for (int state = 0; state < _alphabetSize; ++state)
{
for (int iter = 0; iter < iterNum; ++iter)
{
runOneIter(state);
}
}
computeExpectationsAndPosterior();
}
void simulateRateShiftJumps::init()
{
_waitingTimeParams.clear();
_waitingTimeParams.resize(_alphabetSize);
int i, j;
for (i = 0; i < _alphabetSize; ++i)
{
_waitingTimeParams[i] = -_sp.dPij_dt(i, i, 0.0);
}
//init _jumpProbs.
_jumpProbs.clear();
_jumpProbs.resize(_alphabetSize);
for (i = 0; i < _alphabetSize; ++i)
{
MDOUBLE sum = 0.0;
_jumpProbs[i].resize(_alphabetSize);
for (j = 0; j < _alphabetSize; ++j)
{
if (i == j)
_jumpProbs[i][j] = 0.0;
else
{
_jumpProbs[i][j] = _sp.dPij_dt(i, j, 0.0) / _waitingTimeParams[i];
}
sum += _jumpProbs[i][j];
}
if (! DEQUAL(sum, 1.0,0.001)){
string err = "error in simulateRateShiftJumps::init(): sum probabilities is not 1 and equal to ";
err+=double2string(sum);
errorMsg::reportError(err);
}
}
}
void simulateRateShiftJumps::init(vector <tree::nodeP> inputNodes)
{
init();
//init the vector of waiting times.
//init _orderNodesVec: a vector in which the branch lengths are ordered in ascending order
//_tree.getAllNodes(_orderNodesVec, _tree.getRoot()); // here instead: _orderNodesVec = input nodesVec, and then sort
_orderNodesVec = inputNodes;
sort(_orderNodesVec.begin(), _orderNodesVec.end(), simulateJumpsAbstract::compareDist);
_nodes2JumpsExp.clear();
_nodes2JumpsProb.clear();
//
vector<pair<MDOUBLE,MDOUBLE> > zeroCombinedStates2jumps;
int i,j;
for(i = 0;i < getCombinedAlphabetSize();++i){
pair<MDOUBLE,MDOUBLE> acc_and_decc_jumps(0.0,0.0);
zeroCombinedStates2jumps.push_back(acc_and_decc_jumps);
}
Vdouble zeroVector(getCombinedAlphabetSize(),0.0);
for (i = 0; i < _orderNodesVec.size(); ++i)
{
string nodeName = _orderNodesVec[i]->name();
_nodes2JumpsExp[nodeName] = zeroCombinedStates2jumps;
_nodes2JumpsProb[nodeName] = zeroCombinedStates2jumps;
for (j=0; j<getCombinedAlphabetSize();++j)
_totalTerminals[nodeName]=zeroVector;
}
}
//simulate jumps starting from startState. The simulation continue until the maxTime is reached. In each step:
//1. Draw a new waiting time.
//2. Go over all branches shorter than nextJumpTime and update their jumpsNum between the states that were switched
// (these branches will not be affected by the current jump):
// however they might have been affected by the previous jump
//3. Draw a new state
void simulateRateShiftJumps::runOneIter(int startState)
{
mulAlphabet::rateShiftType my_rateShiftType = mulAlphabet::noRateShift;
MDOUBLE maxTime = _orderNodesVec[_orderNodesVec.size()-1]->dis2father();
MDOUBLE totalTimeTillJump = 0.0;
int curState = startState;
int smallestBranchNotUpdatedSofar = 0;
vector<pair<int, int> > jumpsSoFar(0);
while (totalTimeTillJump < maxTime)
{
MDOUBLE avgWaitingTime = 1 / _waitingTimeParams[curState];
MDOUBLE nextJumpTime = totalTimeTillJump + talRandom::rand_exp(avgWaitingTime);
//go over all branches that "finished" their simulation (shorter than nextJumpTime) and update with their _nodes2JumpsExp
//with the jumps that occured between the terminal Ids: startState-->curState
for (int b = smallestBranchNotUpdatedSofar; b < _orderNodesVec.size(); ++b)
{
if (_orderNodesVec[b]->dis2father() > nextJumpTime)
{
smallestBranchNotUpdatedSofar = b;
break;
}
string nodeName = _orderNodesVec[b]->name();
//update all the jumps that occured along the branch
int terminalState = getCombinedState(startState, curState);
_totalTerminals[nodeName][terminalState]++;
//update all longer branches with all jumps that occurred till now
/* vector<bool> jumpsSoFarBool(getCombinedAlphabetSize(),false);*/
// There's no need for the jumpsSoFarBool vector because we want to count
// the number of syn subs and not just to note that there has been at least 1
// The final probability is calculated in computeExpectationsAndPosterior
for (int j = 0; j < jumpsSoFar.size(); ++j)
{
my_rateShiftType = mulAlphabet::compareCategories(jumpsSoFar[j].first,jumpsSoFar[j].second,_baseAlphabetSize,_numRateCategories);
/* int combinedJumpState = getCombinedState(jumpsSoFar[j].first, jumpsSoFar[j].second);
jumpsSoFarBool[combinedJumpState]=true;*/
if(my_rateShiftType == mulAlphabet::acceleration)
{
_nodes2JumpsExp[nodeName][terminalState].first += 1;
_nodes2JumpsProb[nodeName][terminalState].first += 1;
}
else if(my_rateShiftType == mulAlphabet::deceleration)
{
_nodes2JumpsExp[nodeName][terminalState].second += 1;
_nodes2JumpsProb[nodeName][terminalState].second += 1;
//cout<<"debug: jump dec for node name "<<nodeName<<" from start "<<startState<<" to "<<curState<<endl;//debug
}
}
/*for (int combined=0;combined<jumpsSoFarBool.size();++combined)
{
if (jumpsSoFarBool[combined]){
if(my_rateShiftType == mulAlphabet::acceleration)
_nodes2JumpsProb[nodeName][terminalState].first += 1;
else if(my_rateShiftType == mulAlphabet::deceleration)
_nodes2JumpsProb[nodeName][terminalState].second += 1;
}
}*/
}
totalTimeTillJump = nextJumpTime;
int nextState = giveRandomState(_alphabetSize,curState,_jumpProbs);
jumpsSoFar.push_back(pair<int,int>(curState, nextState));
curState = nextState;
}
}
void simulateRateShiftJumps::computeExpectationsAndPosterior(){
//scale _nodes2JumpsExp so it will represent expectations
map<string, vector<pair<MDOUBLE,MDOUBLE> > >::iterator iterExp = _nodes2JumpsExp.begin();
for (; iterExp != _nodes2JumpsExp.end(); ++iterExp)
{//each node
string nodeName = iterExp->first;
for (int termState = 0; termState < getCombinedAlphabetSize(); ++termState)
{
MDOUBLE totalJumps4currentNodeAndTermState = 0;
map<string, Vdouble>::iterator iterTerm = _totalTerminals.find(nodeName);
map<string, vector<pair<MDOUBLE,MDOUBLE> > >::iterator iterProb = _nodes2JumpsProb.find(nodeName);
if ((iterTerm==_totalTerminals.end()) || (iterProb==_nodes2JumpsProb.end()))
{
errorMsg::reportError("error in simulateJumps::runSimulation, unknown reason: cannot find nodeName in map");
}
if (iterTerm->second[termState]==0){ //never reached these terminal states
if((iterExp->second[termState].first == 0)&&(iterExp->second[termState].second == 0)&&
((iterProb->second[termState].first == 0)&&(iterProb->second[termState].second == 0)))
{
int startID = getStartId(termState);
int endID = getEndId(termState);
if (startID != endID) // if the terminal states are different there was at least one startID->endID jump
{
mulAlphabet::rateShiftType my_rateShiftType = mulAlphabet::compareCategories(startID,endID,_baseAlphabetSize,_numRateCategories);
if(my_rateShiftType == mulAlphabet::acceleration)
{
iterExp->second[termState].first = 1;
iterProb->second[termState].first = 1;
}
else if(my_rateShiftType == mulAlphabet::deceleration)
{
iterExp->second[termState].second = 1;
iterProb->second[termState].second = 1;
}
totalJumps4currentNodeAndTermState = ((iterProb->second[termState].first) + (iterProb->second[termState].second));
if(totalJumps4currentNodeAndTermState)
{
(iterProb->second[termState].first) /= totalJumps4currentNodeAndTermState;
(iterProb->second[termState].second) /= totalJumps4currentNodeAndTermState;
}
}
continue;
}
else
errorMsg::reportError("error in simulateRateShiftJumps::runSimulation, 0 times reached termState but non-zero for jumpCount");
}
(iterExp->second[termState].first) /= iterTerm->second[termState];
(iterExp->second[termState].second) /= iterTerm->second[termState];
totalJumps4currentNodeAndTermState = ((iterProb->second[termState].first) + (iterProb->second[termState].second));
if(totalJumps4currentNodeAndTermState)
{
(iterProb->second[termState].first) /= totalJumps4currentNodeAndTermState;
(iterProb->second[termState].second) /= totalJumps4currentNodeAndTermState;
}
}
}
}
MDOUBLE simulateRateShiftJumps::getExpectation(const string& nodeName, int terminalStart, int terminalEnd, int fromId, int toId)
{
//map <string, VVdouble>::iterator pos;//Old
map<string, vector<pair<MDOUBLE,MDOUBLE> > >::iterator pos;
if ((pos = _nodes2JumpsExp.find(nodeName)) == _nodes2JumpsExp.end())
{
string err="error in simulateRateShiftJumps::getExpectation: cannot find node "+nodeName;
errorMsg::reportError(err);
}
int combinedTerminalState = getCombinedState(terminalStart, terminalEnd);
//Old
//int combinedJumpState = getCombinedState(fromId, toId);
//return (pos->second[combinedTerminalState][combinedJumpState]);
MDOUBLE expectation=0.0;
// !!! go over this to make sure this is correct!!
if(mulAlphabet::compareCategories(fromId,toId,_baseAlphabetSize,_numRateCategories) == mulAlphabet::acceleration)
expectation = pos->second[combinedTerminalState].first;
else if(mulAlphabet::compareCategories(fromId,toId,_baseAlphabetSize,_numRateCategories) == mulAlphabet::deceleration)
expectation = pos->second[combinedTerminalState].second;
return (expectation);
}
MDOUBLE simulateRateShiftJumps::getExpectation(
const string& nodeName,
int terminalStart,
int terminalEnd,
mulAlphabet::rateShiftType my_rateShiftType)
{
map<string, vector<pair<MDOUBLE,MDOUBLE> > >::iterator pos;
if ((pos = _nodes2JumpsExp.find(nodeName)) == _nodes2JumpsExp.end())
{
string err="error in simulateRateShiftJumps::getExpectation: cannot find node "+nodeName;
errorMsg::reportError(err);
}
int combinedTerminalState = getCombinedState(terminalStart, terminalEnd);
MDOUBLE expectation=0.0;
if(my_rateShiftType == mulAlphabet::acceleration)
expectation = pos->second[combinedTerminalState].first;
else if(my_rateShiftType == mulAlphabet::deceleration)
expectation = pos->second[combinedTerminalState].second;
else
errorMsg::reportError("simulateRateShiftJumps::getExpectation does not support computations for non rate-shifts");
return (expectation);
}
MDOUBLE simulateRateShiftJumps::getProb(const string& nodeName, int terminalStart, int terminalEnd, int fromId, int toId){
//map <string, VVdouble>::iterator pos;
map<string, vector<pair<MDOUBLE,MDOUBLE> > >::iterator pos;
if ((pos = _nodes2JumpsProb.find(nodeName)) == _nodes2JumpsProb.end())
{
string err="error in simulateRateShiftJumps::getProb: cannot find node "+nodeName;
errorMsg::reportError(err);
}
int combinedTerminalState = getCombinedState(terminalStart, terminalEnd);
//Old
//int combinedJumpState = getCombinedState(fromId, toId);
//return (pos->second[combinedTerminalState][combinedJumpState]);
MDOUBLE prob=0.0;
//!! go over this to make sure
if(mulAlphabet::compareCategories(fromId,toId,_baseAlphabetSize,_numRateCategories) == mulAlphabet::acceleration)
prob = pos->second[combinedTerminalState].first;
else if(mulAlphabet::compareCategories(fromId,toId,_baseAlphabetSize,_numRateCategories) == mulAlphabet::deceleration)
prob = pos->second[combinedTerminalState].second;
return (prob);
}
MDOUBLE simulateRateShiftJumps::getProb(
const string& nodeName,
int terminalStart,
int terminalEnd,
mulAlphabet::rateShiftType my_rateShiftType)
{
map<string, vector<pair<MDOUBLE,MDOUBLE> > >::iterator pos;
if ((pos = _nodes2JumpsProb.find(nodeName)) == _nodes2JumpsProb.end())
{
string err="error in simulateRateShiftJumps::getProb: cannot find node "+nodeName;
errorMsg::reportError(err);
}
int combinedTerminalState = getCombinedState(terminalStart, terminalEnd);
MDOUBLE prob=0.0;
if(my_rateShiftType == mulAlphabet::acceleration)
prob = pos->second[combinedTerminalState].first;
else if(my_rateShiftType == mulAlphabet::deceleration)
prob = pos->second[combinedTerminalState].second;
else
errorMsg::reportError("simulateRateShiftJumps::getProb does not support probabilities of non rate-shifts");
return (prob);
}
|