File: siteSpecificRateGL.cpp

package info (click to toggle)
fastml 3.11-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,772 kB
  • sloc: cpp: 48,522; perl: 3,588; ansic: 819; makefile: 386; python: 83; sh: 55
file content (299 lines) | stat: -rw-r--r-- 10,960 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// $Id: siteSpecificRate.cpp 3658 2008-03-05 09:25:46Z cohenofi $

#include "siteSpecificRateGL.h"
#include "numRec.h"
#include "checkcovFanctors.h"
#include "definitions.h"

using namespace siteSpecificRateGL;

MDOUBLE siteSpecificRateGL::computeML_siteSpecificRate(Vdouble & ratesV,
								   Vdouble & likelihoodsV,
								   const sequenceContainer& sc,
								   const stochasticProcess& sp,
								   const tree& et,
								   const MDOUBLE maxRate,//20.0f
								   const MDOUBLE tol){//=0.0001f;

	ratesV.resize(sc.seqLen());
	likelihoodsV.resize(sc.seqLen());
	MDOUBLE Lsum = 0.0;

	for (int pos=0; pos < sc.seqLen(); ++pos) {
		siteSpecificRateGL::computeML_siteSpecificRate(pos,sc,sp,et,ratesV[pos],likelihoodsV[pos],maxRate,tol);
		assert(likelihoodsV[pos]>0.0);
		Lsum += log(likelihoodsV[pos]);
		LOG(5,<<" rate of pos: "<<pos<<" = "<<ratesV[pos]<<endl);
	}
	LOG(5,<<" number of sites: "<<sc.seqLen()<<endl);
	return Lsum;
}

MDOUBLE siteSpecificRateGL::computeML_siteSpecificRate(Vdouble & ratesV,
						Vdouble & likelihoodsV,
						const Vint& spAttributesVec,
						const Vint& treeAttributesVec,
						const vector<tree> & etVec,
						const vector<const stochasticProcess *> & spVec,
						const sequenceContainer& sc,
						const MDOUBLE maxRate,
						const MDOUBLE tol){
	MDOUBLE Lsum = 0.0;
	ratesV.resize(sc.seqLen()); // the rates themselves
	likelihoodsV.resize(sc.seqLen()); // the log likelihood of each position
	
	for (int pos=0; pos < sc.seqLen(); ++pos) {
		LOG(5,<<".");
		MDOUBLE bestR=-1.0; // tree1
		//		MDOUBLE LmaxR1=0;
		
		// getting the right tree for the specific position:
		const tree*  treeForThisPosition=NULL;
		if ((etVec.size() >0 ) && (treeAttributesVec[pos]>0)) {
			treeForThisPosition = & etVec[ treeAttributesVec[pos] -1];
		} else {
			errorMsg::reportError("tree vector is empty, or treeAttribute is empty, or treeAttribute[pos] is zero (it should be one)");
		}

		// getting the right stochastic process for the specific position:

		const stochasticProcess* spForThisPosition=NULL;

		if ((spVec.size() >0 ) && (spAttributesVec[pos]>0)) {
			spForThisPosition = spVec[ spAttributesVec[pos] -1];
		} else {
			errorMsg::reportError("stochastic process vector is empty, or spAttributesVec is empty, or spAttribute[pos] is zero (it should be one)");
		}

		siteSpecificRateGL::computeML_siteSpecificRate(pos,sc,*spForThisPosition,*treeForThisPosition,bestR,likelihoodsV[pos],maxRate,tol);
		ratesV[pos] = bestR;
		assert(likelihoodsV[pos]>0.0);
		Lsum += log(likelihoodsV[pos]);
		LOG(5,<<" rate of pos: "<<pos<<" = "<<ratesV[pos]<<endl);
	}
	LOG(5,<<" number of sites: "<<sc.seqLen()<<endl);
	return Lsum;
}

// note that this places the likelihood, rather then the *log*likelihood into posL
void siteSpecificRateGL::computeML_siteSpecificRate(int pos,
								 const sequenceContainer& sc,
								 const stochasticProcess& sp,
								 const tree &et,
								 MDOUBLE& bestRate,
								 MDOUBLE& posL,
								 const MDOUBLE maxRate,
								 const MDOUBLE tol) {
	LOG(5,<<".");
	MDOUBLE ax=0.00001f,bx=maxRate*0.25,cx=maxRate;	// MN
	posL=-brent(ax,bx,cx,Cevaluate_L_given_r(sc,et,sp,pos),tol,&bestRate);
}

MDOUBLE siteSpecificRateGL::computeML_siteSpecificRate(Vdouble & ratesV,
						Vdouble & likelihoodsV,
						const Vint& treeAttributesVec,
						const vector<tree> & etVec,
						const stochasticProcess& sp,
						const sequenceContainer& sc,
						const MDOUBLE maxRate,
						const MDOUBLE tol) {
	Vint spAttributesVec(sc.seqLen(),1);
	vector<const stochasticProcess* >  spVec;
	spVec.push_back(&sp);
	return computeML_siteSpecificRate(ratesV,likelihoodsV,
		spAttributesVec,treeAttributesVec,etVec,spVec,sc,maxRate,tol);
}

MDOUBLE siteSpecificRateGL::computeML_siteSpecificRate(Vdouble & ratesV,
						Vdouble & likelihoodsV,
						const Vint& spAttributesVec,
						const tree & et,
						const vector<const stochasticProcess* > & spVec,
						const sequenceContainer& sc,
						const MDOUBLE maxRate,
						const MDOUBLE tol){
	Vint treeAttributesVec(sc.seqLen(),1);				
	vector<tree>  etVec;
	etVec.push_back(et);
	return siteSpecificRateGL::computeML_siteSpecificRate(ratesV,likelihoodsV,
		spAttributesVec,treeAttributesVec,etVec,spVec,sc,maxRate,tol);
}


// THE BAYESIAN EB_EXP PART OF RATE ESTIMATION. //

void siteSpecificRateGL::computeEB_EXP_siteSpecificRate(int pos,
								 const sequenceContainer& sc,
								 const stochasticProcess& sp,
								 const computePijGam& cpg,
								 const tree &et,
								 MDOUBLE& bestRate,
								 MDOUBLE & stdRate,
								 MDOUBLE & lowerConf,
								 MDOUBLE & upperConf,
								 const MDOUBLE alphaConf, // alpha of 0.05 is considered 0.025 for each side.
								 VVdouble* LpostPerCat,
								 Vdouble* pLforMissingDataPerCat)
{
	// here we compute P(r | data)
	VdoubleRep pGivenR(sp.categories(),0.0);
	doubleRep sum=0;
	MDOUBLE LofPos_givenRateCat;
	LOG(8,<<pos+1<<"\t"); //DEBUG
	for (int cat=0; cat < sp.categories(); ++cat) {
		LofPos_givenRateCat = convert(likelihoodComputation::getLofPos(pos,et,sc,cpg[cat],sp));
		if(pLforMissingDataPerCat){
			LofPos_givenRateCat = LofPos_givenRateCat/(1- (*pLforMissingDataPerCat)[cat]);
		}
		pGivenR[cat] = LofPos_givenRateCat*sp.ratesProb(cat);
		LOG(8,<<cat<<"\t"<<LofPos_givenRateCat<<"\t"); //DEBUG
		sum+=pGivenR[cat];
	}
	LOG(8,<<"\n"); //DEBUG
	assert(sum!=0);
	
	// here we compute sigma r * P(r | data)

	doubleRep sumOfSquares(0.0);
	doubleRep bestRate_dblRep(0.0);
	
	LOG(5,<<"Pos "<<pos<<" content = "<<sc[0][pos]<<" ,total likelihood = "<<sum<<endl); //DEBUG
	
	for (int j=0; j < sp.categories(); ++j) {
		pGivenR[j]/=sum; // So that pGivenR is probability.
		                 // From here on we can convert it back
		                 // to MDOUBLE because it's not a very
		                 // small likelihood any more
		if (LpostPerCat){
			(*LpostPerCat)[j][pos]= convert(pGivenR[j]);
		}
		doubleRep tmp = pGivenR[j]*sp.rates(j);
		bestRate_dblRep += tmp;
		sumOfSquares += (tmp*sp.rates(j));

	}

	bestRate = convert(bestRate_dblRep);
	MDOUBLE varRate = convert(sumOfSquares) - convert(bestRate*bestRate);
	MDOUBLE tolerance = 0.0001; // tolerance for variance is not very exact, and also exact computation not very important
	if (varRate<-tolerance)
	    errorMsg::reportError("Error in computeEB_EXP_siteSpecificRate, varRate < 0");
	if ((varRate<0) && (varRate>=-tolerance))
	    varRate = 0;
	stdRate = sqrt(varRate);

	// detecting the confidence intervals.
	MDOUBLE oneSideConfAlpha = alphaConf/2.0; // because we are computing the two tail.
	doubleRep cdf = 0.0; // cumulative density function.
	int k=0;
	while (k < sp.categories()){
		cdf += convert(pGivenR[k]);
		if (cdf >oneSideConfAlpha) {
			lowerConf = sp.rates(k);
			break;
		} 
		k++;
	}
	while (k < sp.categories()) {
		if (cdf >(1.0-oneSideConfAlpha)) {
			upperConf = sp.rates(k);
			break;
		}
		++k;
		cdf += convert(pGivenR[k]);
	}
	if (k==sp.categories()) upperConf = sp.rates(k-1);
}

void siteSpecificRateGL::computeEB_EXP_siteSpecificRate(Vdouble & ratesV,
								   Vdouble & stdV,
								   Vdouble & lowerBoundV,
								   Vdouble & upperBoundV,
								   const sequenceContainer& sc,
								   const stochasticProcess& sp,
								   const tree& et,
								   const MDOUBLE alphaConf,
								   VVdouble* LpostPerCat,
								   Vdouble* pLforMissingDataPerCat)
{
	ratesV.resize(sc.seqLen());
	stdV.resize(sc.seqLen());
	lowerBoundV.resize(sc.seqLen());
	upperBoundV.resize(sc.seqLen());

	computePijGam cpg;
	cpg.fillPij(et,sp);
	for (int pos=0; pos < sc.seqLen(); ++pos) {
		siteSpecificRateGL::computeEB_EXP_siteSpecificRate(pos,sc,sp,cpg, et,ratesV[pos],stdV[pos],lowerBoundV[pos],upperBoundV[pos],alphaConf,LpostPerCat,pLforMissingDataPerCat);
		LOG(5,<<" rate of pos: "<<pos<<" = "<<ratesV[pos]<<endl);
	}
	LOG(5,<<" number of sites: "<<sc.seqLen()<<endl);
}

void computeEB_EXP_siteSpecificRate(Vdouble & ratesV,
								   Vdouble & stdV,
								   Vdouble & lowerBoundV,
								   Vdouble & upperBoundV,
								   const Vint& spAttributesVec,
								   const Vint& treeAttributesVec,
							       const sequenceContainer& sc,
								   const vector<tree> & etVec,
								   const vector<const stochasticProcess *> & spVec,
								   const MDOUBLE alphaConf){
	ratesV.resize(sc.seqLen());
	stdV.resize(sc.seqLen());
	lowerBoundV.resize(sc.seqLen());
	upperBoundV.resize(sc.seqLen());
	for (int treeNum=0; treeNum<etVec.size(); ++treeNum) {
		for (int spNum = 0; spNum<spVec.size(); ++spNum) {
            computePijGam cpg;
	    cpg.fillPij(etVec[treeNum],*(spVec[spNum]));
			for (int pos=0; pos < sc.seqLen(); ++pos) {
				if (((spAttributesVec[pos]-1)!=spNum ) || ((treeAttributesVec[pos]-1)!=treeNum )) continue;
				const tree*  treeForThisPosition=NULL;
				assert ((etVec.size() >0 ) && (treeAttributesVec[pos]>0));
				treeForThisPosition = & etVec[ treeAttributesVec[pos] -1];
				const stochasticProcess* spForThisPosition=NULL;
				assert ((spVec.size() >0 ) && (spAttributesVec[pos]>0));
				spForThisPosition = spVec[ spAttributesVec[pos] -1];
				siteSpecificRateGL::computeEB_EXP_siteSpecificRate(pos,sc,*spForThisPosition,cpg, *treeForThisPosition,ratesV[pos],stdV[pos],lowerBoundV[pos],upperBoundV[pos],alphaConf);
				LOG(5,<<" rate of pos: "<<pos<<" = "<<ratesV[pos]<<endl);
			}
		}
	}
	LOG(5,<<" number of sites: "<<sc.seqLen()<<endl);
}

// one tree many sps
void siteSpecificRateGL::computeEB_EXP_siteSpecificRate(Vdouble & ratesV,
								   Vdouble & stdV,
								   Vdouble & lowerBoundV,
								   Vdouble & upperBoundV,
								   const Vint& spAttributesVec,
							       const sequenceContainer& sc,
								   const tree & et,
								   const vector<const stochasticProcess *> & spVec,
								   const MDOUBLE alphaConf){
	Vint etAttributesVec(sc.seqLen(),1);				
	vector<tree>  etVec;
	etVec.push_back(et);
	siteSpecificRateGL::computeEB_EXP_siteSpecificRate(ratesV,stdV,lowerBoundV,upperBoundV,spAttributesVec,etAttributesVec,sc,etVec,spVec,alphaConf);
}

// one sp many trees

void siteSpecificRateGL::computeEB_EXP_siteSpecificRate(Vdouble & ratesV,
								   Vdouble & stdV,
								   Vdouble & lowerBoundV,
								   Vdouble & upperBoundV,
								   const Vint& treeAttributesVec,
							       const sequenceContainer& sc,
								   const vector<tree> & etVec,
								   const stochasticProcess & sp,
								   const MDOUBLE alphaConf){
	Vint spAttributesVec(sc.seqLen(),1);
	vector<const stochasticProcess* >  spVec;
	spVec.push_back(&sp);
	siteSpecificRateGL::computeEB_EXP_siteSpecificRate(ratesV,stdV,lowerBoundV,upperBoundV,spAttributesVec,treeAttributesVec,sc,etVec,spVec,alphaConf);
}