1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/*
Copyright (C) 2011 Tal Pupko TalP@tauex.tau.ac.il.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ancestralReconstructStates.h"
#include <cmath>
using namespace std;
/********************************************************************************************
ancestralReconstructStates
*********************************************************************************************/
ancestralReconstructStates::ancestralReconstructStates(const tree &tr, const sequenceContainer &sc, stochasticProcess *sp):
_tr(tr), _sc(sc){
if(!sp){
errorMsg::reportError("error in the constructor ancestralReconstructStates sp argument is NULL");
}
else{
_sp = sp;
}
_statesV.resize(_sc.seqLen());
for (int pos = 0; pos <_sc.seqLen(); ++pos){
initializeStatesVector(pos);
}
}
void ancestralReconstructStates::initializeStatesVector(int pos){
_statesV[pos].resize(_tr.getNodesNum(),-1000);
checkThatNamesInTreeAreSameAsNamesInSequenceContainer(_tr,_sc);
seqContainerTreeMap scTreeMap(_sc,_tr);
vector <tree::nodeP> leaves;
_tr.getAllLeaves(leaves,_tr.getRoot());
for (unsigned int i=0; i< leaves.size();i++){
int myleafId = (leaves[i])->id();
int mySeqId = scTreeMap.seqIdOfNodeI(myleafId);
_statesV[pos][myleafId] = _sc[mySeqId][pos];
}
}
/********************************************************************************************
upL[node][letter] = max(letter_here){P(letter->letter_here)*upL[son1][letter_here]*upL[son2][letter_here]} for letter at father node.
backtrack[node][letter] = argmax of above
*********************************************************************************************/
void ancestralReconstructStates::traverseUpML(VVVdouble &upL, VVVint &backtrack){ // input as empty vector to be filled
LOGnOUT(4,<<"traverseUpML..."<<endl);
upL.resize(_sc.seqLen());
backtrack.resize(_sc.seqLen());
for (int pos = 0; pos <_sc.seqLen(); ++pos){
traverseUpML(upL[pos], backtrack[pos], pos);
}
}
/********************************************************************************************
*********************************************************************************************/
void ancestralReconstructStates::traverseUpML(VVdouble &upL, VVint &backtrack, int pos){ // input as empty vector to be filled
computePijGam pi;
pi.fillPij(_tr,*_sp);
upL.resize(_tr.getNodesNum());
for (unsigned int i = 0; i < upL.size(); i++)
upL[i].resize(_sp->alphabetSize());
backtrack.resize(_tr.getNodesNum());
for (unsigned int i = 0; i < backtrack.size(); i++)
backtrack[i].resize(_sp->alphabetSize());
treeIterDownTopConst tIt(_tr);
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
int father_state = 0;
if (mynode->isLeaf()) {
for (father_state=0; father_state<_sp->alphabetSize();father_state++){ // looping over states at father
int myState = _statesV[pos][mynode->id()];
if(myState == _sc.getAlphabet()->unknown()){
myState = father_state; // same as relations=1, for missing data
}
for (int i=0; i < _sp->categories();++i) {
upL[mynode->id()][father_state] += pi.getPij(i,mynode->id(),father_state,myState)*_sp->ratesProb(i);
}
backtrack[mynode->id()][father_state]=myState;
}
}
else if (!(mynode->isRoot())) {
for (father_state=0; father_state<_sp->alphabetSize();father_state++){ // looping over states at father
MDOUBLE myMax = -1;
int myArgMax=-1;
for (int my_state=0;my_state<_sp->alphabetSize();my_state++){ // loop to find max over current node
//MDOUBLE val=_sp->Pij_t(father_state,my_state,mynode->dis2father());
MDOUBLE val=0;
for (int i=0; i < _sp->categories();++i) {
val += pi.getPij(i,mynode->id(),father_state,my_state)*_sp->ratesProb(i);
}
for (int son=0;son<mynode->getNumberOfSons();son++)
val*=upL[mynode->getSon(son)->id()][my_state];
if (val>myMax){
myMax=val;
myArgMax=my_state;
}
}
if ((myMax<0) || (myArgMax<0))
errorMsg::reportError("Error in traverseUpML: cannot find maximum");
upL[mynode->id()][father_state]=myMax;
backtrack[mynode->id()][father_state]=myArgMax;
}
}
else {// root
for (int root_state=0; root_state<_sp->alphabetSize();root_state++){
MDOUBLE val=_sp->freq(root_state);
for (int son=0;son<mynode->getNumberOfSons();son++)
val*=upL[mynode->getSon(son)->id()][root_state];
upL[mynode->id()][root_state]=val;
}
}
}
}
/********************************************************************************************
return likelihood of max joint reconstruction
*********************************************************************************************/
Vdouble ancestralReconstructStates::traverseDownML(VVVdouble &upL, VVVint &backtrack,VVVint &transitionTypeCount) { // input as already filled vector
LOGnOUT(4,<<"traverseDownML..."<<endl);
Vdouble LofJointV;
LofJointV.resize(_sc.seqLen());
transitionTypeCount.resize(_sc.seqLen());
for (int pos = 0; pos <_sc.seqLen(); ++pos){
LofJointV[pos] = traverseDownML(upL[pos], backtrack[pos],transitionTypeCount[pos], pos);
}
return LofJointV;
}
/********************************************************************************************
fill _statesV, transitionTypeCount
*********************************************************************************************/
MDOUBLE ancestralReconstructStates::traverseDownML(VVdouble &upL, VVint &backtrack,VVint &transitionTypeCount, int pos) { // input as already filled vector
if (backtrack.size() == 0)
errorMsg::reportError("error in ancestralReconstruct::traverseDownML, input vector backtrack must be filled (call traverseUpML() first)");
MDOUBLE LofJoint;
int stateOfRoot;
findMaxInVector(upL[(_tr.getRoot())->id()], LofJoint, stateOfRoot);
_statesV[pos][(_tr.getRoot())->id()] = stateOfRoot;
transitionTypeCount.resize(_sp->alphabetSize());
for (unsigned int i = 0; i < transitionTypeCount.size(); i++)
transitionTypeCount[i].resize(_sp->alphabetSize(),0);
treeIterTopDownConst tIt(_tr);
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if (mynode->isRoot()) continue;
int myId = mynode->id();
int stateAtFather = _statesV[pos][mynode->father()->id()];
int myState = _statesV[pos][mynode->id()];
if(myState == _sc.getAlphabet()->unknown()){
myState = stateAtFather; // same as relations=1, for missing data
}
if (mynode->isLeaf()) {
transitionTypeCount[stateAtFather][myState]++;
if ((_statesV[pos][mynode->id()]!=stateAtFather))
LOG(7,<<"switch from "<<mynode->father()->name()<<"("<<stateAtFather<<") to "<<mynode->name()<<"("<<_statesV[pos][mynode->id()]<<")"<<endl);
continue;
}
if(_statesV[pos][mynode->id()] == -2)
cout<<_statesV[pos][mynode->id()]<<" unKnown at pos="<<pos<<" node="<<mynode->id()<<endl;
_statesV[pos][mynode->id()]=backtrack[myId][stateAtFather];
transitionTypeCount[stateAtFather][_statesV[pos][mynode->id()]]++;
}
return log(LofJoint);
}
/********************************************************************************************
compute Prob(letter at Node N is x|Data): the posterior probabilities at ancestral states
Use the pre-calculated joint posterior probability P(N=x, father(N)=y|D) and just sum over these probs:
Prob(N=x|Data) = sum{fatherState}[P(N=x, father(N)=y|D)]}
stores results in member VVVdouble[pos][node][state] _ancestralProbs
use VVVVdouble _probChanges_PosNodeXY == jointPost[pos][nodeID][fatherLetter][letter]- after computePosteriorOfChangeGivenTerminals
*********************************************************************************************/
void ancestralReconstructStates::computeAncestralPosterior(const VVVVdouble& jointPost)
{
LOGnOUT(4,<<"computeAncestralPosterior (take into acount joint probabilty)..."<<endl);
int numNodes = _tr.getNodesNum();
int alphabetSize = _sp->alphabetSize();
//int alphabetSizeForProbsSize = alphabetSize;
//bool isThereMissingData = _sc.getAlphabetDistribution(true)[2]>0;
//if(isThereMissingData)
// alphabetSizeForProbsSize++; // resize for one more
_ancestralProbs.resize(_sc.seqLen());
for (int pos = 0; pos <_sc.seqLen(); ++pos){
resizeMatrix(_ancestralProbs[pos], numNodes, alphabetSize);
treeIterTopDownConst tIt(_tr);
int letter;
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if (mynode->isRoot()) {
//for(letter = 0; letter<alphabetSize; ++letter) // itay's version - the computed vals are all 0
// _ancestralProbs[pos][mynode->id()][letter] = jointPost[pos][mynode->id()][0][letter];
for(letter = 0; letter < alphabetSize; ++letter) {
MDOUBLE sum = 0.0;
for(int sonLetter = 0; sonLetter < alphabetSize; ++sonLetter) {
sum += jointPost[pos][mynode->getSon(0)->id()][letter][sonLetter]; // sum over the son joint prob (instead of father)
}
_ancestralProbs[pos][mynode->id()][letter] = sum;
}
continue;
}
for(letter = 0; letter < alphabetSize; ++letter) {
MDOUBLE sum = 0.0;
for(int fatherLetter = 0; fatherLetter < alphabetSize; ++fatherLetter) {
sum += jointPost[pos][mynode->id()][fatherLetter][letter];
}
_ancestralProbs[pos][mynode->id()][letter] = sum;
}
}
}
}
|