1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*
Copyright (C) 2011 Tal Pupko TalP@tauex.tau.ac.il.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "bblLS.h"
#include "numRec.h"
#include "likelihoodComputation.h"
#include "likelihoodComputationGL.h"
#include "gainLossOptions.h"
#include <cmath>
bblLS::bblLS()
{}
MDOUBLE bblLS::optimizeBranches(tree& tr, stochasticProcess* sp, const sequenceContainer &sc, Vdouble* weights, unObservableData* unObservableData_p,
const int outerIter,
const MDOUBLE epsilonOptimizationBranch, const int numIterations,
MDOUBLE curL)
{
_weights = weights;
MDOUBLE prevIterL = VERYSMALL;
if (curL == NULL)
_treeLikelihood = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(tr,sc,*sp,_weights,unObservableData_p);
else
_treeLikelihood = curL;
LOGnOUT(4,<<"============================="<<endl;);
LOGnOUT(4,<<"ll before bbl = "<<_treeLikelihood<<endl;);
vector<tree::nodeP> nodesV;
tr.getAllNodes(nodesV,tr.getRoot());
int numberOfBranchs = nodesV.size();
MDOUBLE epsilonOptimizationIterFactor = numberOfBranchs/1.5; // (was 2) for 100 branches (~50 species) the epsilon for the entire iter is 50 times the one for branch
epsilonOptimizationIterFactor = max(5.0,epsilonOptimizationIterFactor);
MDOUBLE epsilonOptimizationIter = epsilonOptimizationBranch*epsilonOptimizationIterFactor; // for eBranch=0.2 next iteration only for 10 logL points
LOGnOUT(4,<<"BBL starts with epsilon branch= "<<epsilonOptimizationBranch<<" and epsilon iter="<<epsilonOptimizationIter<<endl;);
int iter;
for (iter = 1; iter <= numIterations; ++iter)
{
if (_treeLikelihood < prevIterL + epsilonOptimizationIter){
LOGnOUT(3,<<" BBL optimization converged. Iter= "<<iter<<" Likelihood="<<_treeLikelihood<<endl);
return _treeLikelihood; //likelihood converged
}
prevIterL = _treeLikelihood;
LOG(4,<<"---- BBL iteration: "<<iter<<endl;);
MDOUBLE paramFound;
MDOUBLE oldBl;
MDOUBLE newL;
for (int i=0; i<nodesV.size(); i++)
{
if (nodesV[i]->isRoot())
continue;
oldBl = nodesV[i]->dis2father();
if(gainLossOptions::_isBblForceFactorCorrection){
newL = -brent((oldBl+gainLossOptions::_minBranchLength)/gainLossOptions::_BblFactorCorrection,
oldBl,
(oldBl+gainLossOptions::_minBranchLength)*gainLossOptions::_BblFactorCorrection,
evalBranch(nodesV[i],&tr, sc, sp,_weights,unObservableData_p), epsilonOptimizationBranch, ¶mFound);
}
else{
newL = -brent(gainLossOptions::_minBranchLength, oldBl, gainLossOptions::_maxBranchLength, evalBranch(nodesV[i],&tr, sc, sp,_weights,unObservableData_p), epsilonOptimizationBranch, ¶mFound);
}
if (newL >= _treeLikelihood)
{
_treeLikelihood = newL;
nodesV[i]->setDisToFather(paramFound);
if(unObservableData_p) unObservableData_p->setLforMissingData(tr,sp);
LOGnOUT(4,<<"BL old... "<<oldBl<<" BL done... "<<nodesV[i]->dis2father()<<"...LL="<<_treeLikelihood<<"..."<<endl;);
}
else //likelihood went down!
{
nodesV[i]->setDisToFather(oldBl); //return to previous BL
unObservableData_p->setLforMissingData(tr,sp);
LOGnOUT(4,<<"*** WARNING: L went down : "<<endl;);
LOGnOUT(4,<<" BL Found... "<<paramFound<<"...LL="<<newL<<"...";);
LOGnOUT(4,<<" BL old... "<<oldBl<<"...LL="<<_treeLikelihood<<"..."<<endl;);
}
}
string treeINodes = gainLossOptions::_outDir + "//" + "TheTree.INodes.iter" +int2string(outerIter)+ ".Inner"+ int2string(iter) + ".ph";
printTree (tr, treeINodes);
LOGnOUT(3,<<"BBL iter "<<iter<<"...LL="<<_treeLikelihood<<"..."<<endl;);
}
if (iter>numIterations)
LOGnOUT(4,<<" Too many="<<iter-1<<" iterations in BBL. Last optimized tree is used."<<endl);
return _treeLikelihood;
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE bblLS::optimizeBranches(tree& tr, vector<vector<stochasticProcess*> >& spVVec,
const distribution * gainDist, const distribution * lossDist,
const sequenceContainer &sc,
Vdouble* weights, unObservableData* unObservableData_p,
const int outerIter,
const MDOUBLE epsilonOptimizationBranch , const int numIterations ,
MDOUBLE curL)
{
_weights = weights;
MDOUBLE prevIterL = VERYSMALL;
if (curL == NULL)
_treeLikelihood = likelihoodComputationGL::getTreeLikelihoodAllPosAlphTheSame(tr,sc,spVVec,gainDist,lossDist,weights,unObservableData_p);
else
_treeLikelihood = curL;
LOGnOUT(4,<<"============================="<<endl;);
LOGnOUT(4,<<"ll before bbl = "<<_treeLikelihood<<endl;);
vector<tree::nodeP> nodesV;
tr.getAllNodes(nodesV,tr.getRoot());
int numberOfBranchs = nodesV.size();
MDOUBLE epsilonOptimizationIterFactor = numberOfBranchs/2.0; // for 100 branches (~50 species) the epsilon for the entire iter is 50 times the one for branch
epsilonOptimizationIterFactor = max(5.0,epsilonOptimizationIterFactor);
MDOUBLE epsilonOptimizationIter = epsilonOptimizationBranch*epsilonOptimizationIterFactor; // for eBranch=0.2 next iteration only for 10 logL points
LOGnOUT(4,<<"BBL starts with epsilon branch= "<<epsilonOptimizationBranch<<" and epsilon iter="<<epsilonOptimizationIter<<endl;);
int iter;
for (iter = 1; iter <= numIterations; ++iter)
{
if (_treeLikelihood < prevIterL + epsilonOptimizationIter){
LOGnOUT(3,<<" BBL optimization converged. Iter= "<<iter<<" Likelihood="<<_treeLikelihood<<endl);
return _treeLikelihood; //likelihood converged
}
prevIterL = _treeLikelihood;
LOG(4,<<"---- BBL iteration: "<<iter<<endl;);
MDOUBLE paramFound;
MDOUBLE oldBl;
MDOUBLE newL;
for (int i=0; i<numberOfBranchs; i++)
{
if (nodesV[i]->isRoot())
continue;
oldBl = nodesV[i]->dis2father();
if(gainLossOptions::_isBblForceFactorCorrection){
newL = -brent((oldBl+gainLossOptions::_minBranchLength)/gainLossOptions::_BblFactorCorrection,
oldBl,
(oldBl+gainLossOptions::_minBranchLength)*gainLossOptions::_BblFactorCorrection, evalBranchSPvv(nodesV[i],&tr, sc, spVVec,gainDist,lossDist,weights,unObservableData_p), epsilonOptimizationBranch, ¶mFound);
}
else{
newL = -brent(gainLossOptions::_minBranchLength, oldBl, gainLossOptions::_maxBranchLength, evalBranchSPvv(nodesV[i],&tr, sc, spVVec,gainDist,lossDist,weights,unObservableData_p), epsilonOptimizationBranch, ¶mFound);
}
if (newL >= _treeLikelihood)
{
_treeLikelihood = newL;
nodesV[i]->setDisToFather(paramFound);
if(unObservableData_p) unObservableData_p->setLforMissingData(tr,spVVec,gainDist,lossDist);
LOGnOUT(4,<<"BL old... "<<oldBl<<" BL done... "<<nodesV[i]->dis2father()<<"...LL="<<_treeLikelihood<<"..."<<endl;);
}
else //likelihood went down!
{
nodesV[i]->setDisToFather(oldBl); //return to previous BL
if(unObservableData_p) unObservableData_p->setLforMissingData(tr,spVVec,gainDist,lossDist);
LOGnOUT(4,<<"*** WARNING: L went down: "<<endl;);
LOGnOUT(4,<<" BL Found... "<<paramFound<<"...LL="<<newL<<"...";);
LOGnOUT(4,<<" BL old... "<<oldBl<<"...LL="<<_treeLikelihood<<"..."<<endl;);
}
}
string treeINodes = gainLossOptions::_outDir + "//" + "TheTree.INodes.iter" +int2string(outerIter)+ ".Inner"+ int2string(iter) + ".ph";
printTree (tr, treeINodes);
LOGnOUT(3,<<"BBL iter "<<iter<<"...LL="<<_treeLikelihood<<"..."<<endl;);
}
if (iter>numIterations)
LOGnOUT(4,<<" Too many="<<iter-1<<" iterations in BBL. Last optimized tree is used."<<endl);
return _treeLikelihood;
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE evalBranch::operator()(MDOUBLE x)
{
_pNode->setDisToFather(x);
if(_unObservableData_p)_unObservableData_p->setLforMissingData(*_tr,_sp);
MDOUBLE LL = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(*_tr,_sc,*_sp,_weights,_unObservableData_p);
return -LL;
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE evalBranchSPvv::operator()(MDOUBLE x)
{
_pNode->setDisToFather(x);
if(_unObservableData_p) _unObservableData_p->setLforMissingData(*_tr,_spVVec,_gainDist,_lossDist);
MDOUBLE LL = likelihoodComputationGL::getTreeLikelihoodAllPosAlphTheSame(*_tr,_sc,_spVVec,_gainDist,_lossDist,_weights,_unObservableData_p);
return -LL;
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE evalBranchProportionExponent::operator()(MDOUBLE x)
{
MDOUBLE factorBL = pow(10,x);
_tr->multipleAllBranchesByFactor(factorBL);
if(_unObservableData_p)_unObservableData_p->setLforMissingData(*_tr,_sp);
MDOUBLE LL = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(*_tr,_sc,*_sp,_weights,_unObservableData_p);
_tr->multipleAllBranchesByFactor(1/factorBL);
LOG(5,<<"Branch factor val = "<<factorBL<<" logL = "<<LL<<endl);
return -LL;
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE evalBranchProportionExponentSPvv::operator()(MDOUBLE x)
{
MDOUBLE factorBL = pow(10,x);
_tr->multipleAllBranchesByFactor(factorBL);
if(_unObservableData_p) _unObservableData_p->setLforMissingData(*_tr,_spVVec,_gainDist,_lossDist);
MDOUBLE LL = likelihoodComputationGL::getTreeLikelihoodAllPosAlphTheSame(*_tr,_sc,_spVVec,_gainDist,_lossDist,_weights,_unObservableData_p);
LOG(5,<<"Branch factor val = "<<factorBL<<" logL = "<<LL<<endl);
_tr->multipleAllBranchesByFactor(1/factorBL);
return -LL;
}
|