1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
|
/*
Copyright (C) 2011 Tal Pupko TalP@tauex.tau.ac.il.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "computeCorrelations.h"
#include "gainLossUtils.h"
#include "gainLossAlphabet.h"
/********************************************************************************************
computeCorrelations
Input: _expChanges_PosNodeXY - required,
if _expChanges_PosNodeXY_B not NULL, compute correlation against this data
1. Compute correlation before simulations, based only on real dataset
(R is computed for each pair in real data)
startComputeAmongSitesCorrelations()
correl->runComputeCorrelations() // with Real data
Perform several iteration of simulations:
startParametricBootstapCorrelation()
Foreach iteration of simulations:
1.1. simulated data with same model
2. Compute correlation of simulated data
computeCoEvolutionScoresBasedOnSimulatedDataCoMap()
2.1 fill LpostPerCat using rate4site or GL4site
2.2 fill expChanges_PosNodeXY_Sim stochastic mapping using computeCountsGL
2.3 new computeCorrel object with both real and simulated data used:
2.3.1 runComputeCorrelations
2.3.2 sort - produceSortedVectorsOfAllCorrelations
2.3.3 bins - produceSortedVectorsOfCorrelationsBinedByRate
2.3.4 pVal - computedCorrelationsPValBasedOnSimulatedDataCoMapBins
2.3.5 FDR pVals2qVals
2.3.6 printComputedCorrelationsData (smart print of map values)
*********************************************************************************************/
computeCorrelations::computeCorrelations(tree& tr, string& outDir, VVVVdouble* expChanges_PosNodeXY, VVVVdouble* expChanges_PosNodeXY_B):
_tr(tr),_outDir(outDir)
{
_expChanges_PosNodeXY = *expChanges_PosNodeXY;
// Type of correlation - assume _EventTypes =(gain, loss, both) and if less options, the last ones are missing
if(gainLossOptions::_isCorrelateWithPearson)
_isPearson.push_back(true);
if(gainLossOptions::_isCorrelateWithSpearman)
_isPearson.push_back(false);
if(_isPearson.size()==0){
_isPearson.push_back(true);
LOGnOUT(4,<<"Pearson correlation is compted since no option is selected"<<endl);
}
if(gainLossOptions::_isOnlyCorrelateWithBoth){
_EventTypes.push_back("gain");
_EventTypes.push_back("loss");
_EventTypes.push_back("both");
}
else{
_EventTypes.push_back("gain");
if(gainLossOptions::_isAlsoCorrelateWithLoss)
_EventTypes.push_back("loss");
if(gainLossOptions::_isAlsoCorrelateWithBoth)
_EventTypes.push_back("both");
}
for (int i = 0; i <_EventTypes.size(); ++i){
_EventTypesMap[_EventTypes[i]]=i;
map<string, int> FromTo;
if(_EventTypes[i] == "gain"){
FromTo["from"]=0;
FromTo["to"]=1; }
else if(_EventTypes[i] == "loss"){
FromTo["from"]=1;
FromTo["to"]=0;
}else if(_EventTypes[i] == "both"){
LOGnOUT(4,<<"Event _EventTypesFromTo is not applicable for "<<_EventTypes[i]<<" both 0->1 and 1->0 are computed"<<endl);
break;
}
_EventTypesFromTo[_EventTypes[i]] = FromTo;
LOGnOUT(4,<<"Event Type="<<_EventTypes[i]<<endl);
}
if(expChanges_PosNodeXY_B){
_expChanges_PosNodeXY_B = *expChanges_PosNodeXY_B;
_isTwoSetsOfInputForCorrelation = true;
}else{
_isTwoSetsOfInputForCorrelation = false;
}
_numOfSamplesInLowRateFirstBin = (int)min(100.0, (double)(_expChanges_PosNodeXY.size()/10.0)); // thus, the best p-value for low Rate 0.01
if(_numOfSamplesInLowRateFirstBin<1)
_numOfSamplesInLowRateFirstBin = 1;
LOGnOUT(4,<<"Lowest pVal for correlation with rate below simulations is "<<1.0/_numOfSamplesInLowRateFirstBin<<endl);
}
/********************************************************************************************
*********************************************************************************************/
computeCorrelations::~computeCorrelations(){
//clearVVVV(_jointProb_PosNodeXY);
}
/********************************************************************************************
*********************************************************************************************/
computeCorrelations& computeCorrelations::operator=(const computeCorrelations &other){
if (this != &other) { // Check for self-assignment
}
return *this;
}
/********************************************************************************************
Compute the Pearson / Spearman correlation among sites.
*********************************************************************************************/
void computeCorrelations::runComputeCorrelations(const Vint& selectedPositions, const Vint& numOfGapsTillSite, const bool isNormalizeForBranch)
{
LOGnOUT(4,<<endl<<"runComputeCorrelations..."<<endl);
time_t t1,t2;
time(&t1);
int numOfbranches = _tr.getNodesNum()-1; // was -1, minus the root node
int numOfSitesSelected = selectedPositions.size();
int numOfpositionsIn_A = _expChanges_PosNodeXY.size();
int numOfpositionsIn_B;
if(_isTwoSetsOfInputForCorrelation)
numOfpositionsIn_B = _expChanges_PosNodeXY_B.size();
else
numOfpositionsIn_B = _expChanges_PosNodeXY.size(); // if B is not given, it's copy
if(_isTwoSetsOfInputForCorrelation)
LOGnOUT(3, <<"NOTE: Two separate dataset input.\n Compute correl for selectedSites="<<numOfSitesSelected<<" subset of A="<<numOfpositionsIn_A<<" against B="<<numOfpositionsIn_B<<endl);
//// Mapping vectors
LOGnOUT(4, <<"Fill events vectors..."<<endl);
// Expectation, keep the duplicated code. Maybe update later
_expPerPosPerBranchVec.resize(_EventTypes.size());
_expPerPosPerBranchVec_B.resize(_EventTypes.size());
for (vector<string>::iterator evnt=_EventTypes.begin() ; evnt < _EventTypes.end(); evnt++ ){
if(*evnt == "gain" || *evnt == "loss")
fillMapValPerPosPerBranch(_expPerPosPerBranchVec[_EventTypesMap[*evnt]],*evnt,_expChanges_PosNodeXY,isNormalizeForBranch); // fill _expPerPosPerBranchVec
if(*evnt == "both"){
if(_EventTypes.size()<3)
errorMsg::reportError("Error: correlation for _EventTypes=both with less than 3 options assume:(gain, loss, both)");
_expPerPosPerBranchVec[_EventTypesMap[*evnt]] = _expPerPosPerBranchVec[_EventTypesMap["gain"]]; // gain and loss appended (double size vector)
appendVectors(_expPerPosPerBranchVec[_EventTypesMap[*evnt]], _expPerPosPerBranchVec[_EventTypesMap["loss"]]);
}
if(_isTwoSetsOfInputForCorrelation){
if(*evnt == "gain" || *evnt == "loss")
fillMapValPerPosPerBranch(_expPerPosPerBranchVec_B[_EventTypesMap[*evnt]],*evnt,_expChanges_PosNodeXY_B,isNormalizeForBranch); //
if(*evnt == "both"){
_expPerPosPerBranchVec_B[_EventTypesMap[*evnt]] = _expPerPosPerBranchVec_B[_EventTypesMap["gain"]]; // gain and loss appended (double size vector)
appendVectors(_expPerPosPerBranchVec_B[_EventTypesMap[*evnt]], _expPerPosPerBranchVec_B[_EventTypesMap["loss"]]);
}
}else{
_expPerPosPerBranchVec_B = _expPerPosPerBranchVec;
}
}
if(gainLossOptions::_isOnlyCorrelateWithBoth){ // if "both", gain and loss were used only for the fill-up.
while(*_EventTypes.begin() == "gain" || *_EventTypes.begin() == "loss")
_EventTypes.erase (_EventTypes.begin());
}
//// correlation vectors, filled below
LOGnOUT(6, <<"Resize correlation vectors vectors"<<endl);
int numberOfCorrelations = _isPearson.size()*_EventTypes.size();
_correlationsPerSitePerPosVec.resize(numberOfCorrelations);
for (int typeC = 0; typeC <numberOfCorrelations; ++typeC)
resizeMatrix(_correlationsPerSitePerPosVec[typeC], numOfSitesSelected, numOfpositionsIn_B);
//for (vector<bool>::iterator it=_isPearson.begin() ; it < _isPearson.end(); it++ ){
// for (vector<string>::iterator evnt=_EventTypes.begin() ; evnt < _EventTypes.end(); evnt++ ){ // could be done with int
// LOGnOUT(4, <<vecIndex<<" - Compute correl isSpearman="<<*it<<" with type="<<*evnt<<endl);
// vecIndex++;
// }
//}
int vecIndex=0;
for (vector<bool>::iterator it=_isPearson.begin() ; it < _isPearson.end(); it++ ){
//int typeIndex=0;
for (vector<string>::iterator evnt=_EventTypes.begin() ; evnt < _EventTypes.end(); evnt++ ){ // could be done with int
Vdouble correlationVecAve; // per correlation type, each item is the Mean for a selected position again all
Vdouble correlationVecMedian; // per correlation type, each item is the Median for a selected position again all
LOGnOUT(4, <<"Compute correlation isPearson="<<*it<<" with type="<<*evnt<<endl);
for (int selectedSiteIndex = 0; selectedSiteIndex <numOfSitesSelected; ++selectedSiteIndex){
if(selectedSiteIndex%100==0)
cout<<"*";
int selectedSite = selectedPositions[selectedSiteIndex];
int selectedSiteRemovedGaps = selectedSite- numOfGapsTillSite[selectedSiteIndex];
fillCorrPerSelectedSites(_correlationsPerSitePerPosVec[vecIndex][selectedSiteIndex],_expPerPosPerBranchVec[_EventTypesMap[*evnt]],_expPerPosPerBranchVec_B[_EventTypesMap[*evnt]],selectedSiteRemovedGaps,(*it)); // expPerPosPerBranchVec still have gain,loss,both
correlationVecAve.push_back(computeAverage((_correlationsPerSitePerPosVec[vecIndex][selectedSiteIndex])));
correlationVecMedian.push_back(computeMedian((_correlationsPerSitePerPosVec[vecIndex][selectedSiteIndex])));
}
cout<<"\n"; // end of "*" for this correlation type
if(gainLossOptions::_selectedSitesForCorrelation=="")
LOGnOUT(4, <<"Correlation coefficient (mean of Val=Mean/Median per selected) Mean="<<computeAverage(correlationVecAve)<<" Median="<<computeAverage(correlationVecMedian)<<endl);
//typeIndex++;
vecIndex++;
}
}
time(&t2);
LOGnOUT(4,<<"TIME = "<<(t2-t1)/60.0<<" minutes"<<endl);
}
/********************************************************************************************
*********************************************************************************************/
MDOUBLE computeCorrelations::computeNminPerPair(const int site_A, const int site_B, const int typeIndex, const VVVdouble& exp_PosXY){
MDOUBLE NminVal = 0;
MDOUBLE siteA_Rate;
MDOUBLE siteB_Rate;
if(typeIndex == 2 || gainLossOptions::_isOnlyCorrelateWithBoth){ // both
MDOUBLE siteA_Gain = exp_PosXY[site_A][0][1];
MDOUBLE siteA_Loss = exp_PosXY[site_A][1][0];
siteA_Rate = computeNminRforCorrelWithGainAndLoss(siteA_Gain,siteA_Loss);
MDOUBLE siteB_Gain = exp_PosXY[site_B][0][1];
MDOUBLE siteB_Loss = exp_PosXY[site_B][1][0];
siteB_Rate = computeNminRforCorrelWithGainAndLoss(siteB_Gain,siteB_Loss);
}else{
string type = _EventTypes[typeIndex];
int from = _EventTypesFromTo[type]["from"];
int to = _EventTypesFromTo[type]["to"];
siteA_Rate = exp_PosXY[site_A][from][to];
siteB_Rate = exp_PosXY[site_B][from][to];
}
NminVal = min(siteA_Rate, siteB_Rate);
return NminVal;
}
/********************************************************************************************
*********************************************************************************************/
void computeCorrelations::produceSortedVectorsOfAllCorrelations(Vdouble& rate4siteSim){
LOGnOUT(4,<<endl<<"produceSortedVectorsOfAllCorrelations for simulated data (sort rates and correlations (paired))..."<<endl);
time_t t1,t2;
time(&t1);
if(rate4siteSim.size()==0) // no Rate4site input is provided
computeRateValPerPos(_expChanges_PosNodeXY,_exp_PosXY);
int numberOfcorrelationVec = _correlationsPerSitePerPosVec.size();
int numOfSites_A = _correlationsPerSitePerPosVec[0].size();
int numOfSites_B = _correlationsPerSitePerPosVec[0][0].size();
_pairWiseCorrelationsAndNminSim.resize(numberOfcorrelationVec);
_NminSortedSim.resize(numberOfcorrelationVec);
for (int corIndex = 0; corIndex <numberOfcorrelationVec; ++corIndex){
LOGnOUT(4,<<" *** corIndex="<<corIndex<<endl);
int typeIndex = corIndex % _EventTypes.size(); // in case both Spearman and pearson are used
int indexAll = 0;
Vdouble correlations;
Vdouble Nmins;
for (int site_A = 0; site_A <numOfSites_A; ++site_A){
for (int site_B = site_A; site_B <numOfSites_B; ++site_B){
if(site_A == site_B)
continue;
MDOUBLE correlVal = _correlationsPerSitePerPosVec[corIndex][site_A][site_B];
correlations.push_back(correlVal);
MDOUBLE NminVal=0;
if(rate4siteSim.size()==0)
NminVal = computeNminPerPair(site_A, site_B, typeIndex, _exp_PosXY);
else
NminVal = min(rate4siteSim[site_A],rate4siteSim[site_B]);
Nmins.push_back(NminVal);
indexAll++;
}
}
vector< vecElem<MDOUBLE> > orderVecNmin;
orderVec(Nmins, orderVecNmin);
//resizeMatrix(_pairWiseCorrelationsAndNminSim[corIndex], 2 ,indexAll); // pairWiseCorrelationsAndNmin[corrIndex][pairIndex][0/1][val]
resizeMatrix(_pairWiseCorrelationsAndNminSim[corIndex], 1 ,indexAll); // pairWiseCorrelationsAndNmin[corrIndex][pairIndex][0/1][val]
for (int i = 0; i <indexAll; ++i){
//_pairWiseCorrelationsAndNminSim[corIndex][0][i] = orderVecNmin[i].getValue();
//_pairWiseCorrelationsAndNminSim[corIndex][1][i] = correlations[orderVecNmin[i].getPlace()];
_pairWiseCorrelationsAndNminSim[corIndex][0][i] = correlations[orderVecNmin[i].getPlace()];
}
_NminSortedSim[corIndex] = Nmins; // vector copy no resize?
sort( _NminSortedSim[corIndex].begin(),_NminSortedSim[corIndex].end() );
LOGnOUT(4,<<"\nSimulated Data correlations frequencies:"<<endl);
LOGnOUT(4,<<"num of correlations="<<correlations.size()<<endl);
sort(correlations.begin(),correlations.end());
printCorrelationsFrequencies(correlations);
LOGnOUT(4,<<"Finish sorting "<<indexAll<<" pairs of correlating sites"<<endl);
LOGnOUT(4,<<"Minimal rate (Nmin)="<<*(_NminSortedSim[corIndex].begin() )<<" max="<<*(_NminSortedSim[corIndex].end()-1)<<endl);
}
time(&t2);
LOGnOUT(4,<<"TIME = "<<(t2-t1)/60.0<<" minutes (sort vectors)"<<endl);
}
/********************************************************************************************
Each bin the index within sorted Nmin vector (Rate) is progressed (+++)
if _isSortVectorOfCorrelationsBinsByLowerRateBound
1. => the binLimit = LowLimit = f(index), (computed before index +++)
UpLimit is maxLimit for all bins
else
2. => the binLimit = UpLimit = f(index), (computed after index +++)
LowLimit is the UpLimit of previous bin
Note: Two versions exists for the _isSortVectorOfCorrelationsBinsByLowerRateBound (which is not the default)
The assumption (which appears correct in Corr~1) is that the probability of high correlation by chance is smaller with higher rate.
Thus, in the modified one (16/05/12) higher rates had more simulations to compare with (compare with all sim. with lower rate)
(compared with all those below.)
In previous version, higher rates had less simulations to compare with (compare with all sim. with higher rate), but for high Obs. rate,
comparison with "lower rate bins" was allowed to avoid the paradox of smaller pVal of pairs with low rate (with "while" mechanism)
*********************************************************************************************/
int computeCorrelations::produceSortedVectorsOfCorrelationsBinedByRate(MDOUBLE medianNminOfRealData, ofstream* simCorrelStream){
LOGnOUT(4,<<endl<<"produceSortedVectorsOfCorrelationsBinedByRate for simulated data..."<<endl);
time_t t1,t2;
time(&t1);
int numberOfHighCorrInSimulationOfMedianNminBin = 0;
int numOfBins = gainLossOptions::_numOfBinsInParametricBootstrapSimulations;
pair<vector<double>::iterator,vector<double>::iterator> bounds;
int numberOfcorrelationVec = _correlationsPerSitePerPosVec.size();
_correlationSubSetsNminLimitValues.resize(numberOfcorrelationVec);
_correlationsSubSets.resize(numberOfcorrelationVec);
_extremeValDistributions.resize(numberOfcorrelationVec);
int numOfSimulatedTotalPairs = _NminSortedSim[0].size(); // same for all CorrTypes
LOGnOUT(4,<<"Num of pairs in simulations="<<numOfSimulatedTotalPairs<<endl);
for (int corIndex = 0; corIndex <numberOfcorrelationVec; ++corIndex){
LOGnOUT(4,<<"For corIndex="<<corIndex<<endl);
int typeIndex = corIndex % _EventTypes.size(); // in case both Spearman and pearson are used
MDOUBLE Nmin_min = 0;
if(Parameters::getFloat("_minExpThresholdForPValComputationForCorrelatingPair")>0){
Nmin_min = Parameters::getFloat("_minExpThresholdForPValComputationForCorrelatingPair");
LOGnOUT(4,<<"Nmin_min by threshold="<<Nmin_min<<endl);
}
else
Nmin_min = *_NminSortedSim[corIndex].begin();
bounds = equal_range (_NminSortedSim[corIndex].begin(), _NminSortedSim[corIndex].end(), Nmin_min);
int IndexOfValAboveNmin_min = int(bounds.first - _NminSortedSim[corIndex].begin());
LOGnOUT(4,<<"Nmin_min in dataset="<<*(_NminSortedSim[corIndex].begin()+IndexOfValAboveNmin_min)<<endl);
int numOfSimulationPairs = _NminSortedSim[corIndex].size()-IndexOfValAboveNmin_min;
if(numOfSimulationPairs==0)
errorMsg::reportError("_minExpThresholdForPValComputationForCorrelatingPair is too high, no simulations above that value");
LOGnOUT(4,<<"Num of pairs above threshold (valid)="<<numOfSimulationPairs<<endl<<endl);
int numOfSamplesInBin;
bool randomOverlapPerIteration = true;
MDOUBLE overlap = gainLossOptions::_relativeSizeOfOverLappedBins;
if(randomOverlapPerIteration)
overlap = gainLossOptions::_relativeSizeOfOverLappedBins + talRandom::giveRandomNumberBetweenTwoPoints(-0.1, 0.1);
LOGnOUT(4,<<"Size of overlapped bins ="<<overlap<<endl<<endl);
if(gainLossOptions::_isSortVectorOfCorrelationsBinsByMidRateBound)
numOfSamplesInBin = (int)(numOfSimulationPairs * overlap);
else
numOfSamplesInBin = (int)(numOfSimulationPairs/numOfBins);
MDOUBLE Nmin_max = *(_NminSortedSim[corIndex].end()-1);
MDOUBLE w_range = (Nmin_max-Nmin_min)/numOfBins;
int numOfSamplesInCurrBin = 0;
MDOUBLE Nmin_lower = Nmin_min;
MDOUBLE Nmin_upper = Nmin_min;
MDOUBLE Nmin_mid = Nmin_min; // use with Mid Boundary with overlap
MDOUBLE NminPerBin = 0;
int indexOfSamplesForBin = IndexOfValAboveNmin_min;
int indexOfSamplesForBinPrev = IndexOfValAboveNmin_min;
int indexOfSamplesForBinUpper = IndexOfValAboveNmin_min;
int indexOfSamplesForBinMid = IndexOfValAboveNmin_min;
_correlationsSubSets[corIndex].resize(numOfBins+1); // the actual size may be smaller, if break
//_correlationSubSetsNminLimitValues[corIndex].resize(numOfBins+1); // to Zero bin
vector<MDOUBLE>::iterator it = _pairWiseCorrelationsAndNminSim[corIndex][0].begin(); // correlation part of vector
// elevate Nmin Threshold if: (A) freqOfHighCorr was too high (B) freqOfHighCorr is reduced consistently with higher Nmin (C) new Nmin is lower than medianNminOfRealData
MDOUBLE minExpTBeforeChange = (double)Parameters::getFloat("_minExpThresholdForPValComputationForCorrelatingPair");
MDOUBLE freqOfHighCorr = 0;
MDOUBLE freqOfHighCorrPrev = 0;
MDOUBLE expextedFreq;
if(gainLossOptions::_isUpdateMinExpThresholdGivenHighFractionOfHighCorrel){
int isHigherNminReducedFreqOfHighCorr = false;
int numOfBranches = _expChanges_PosNodeXY[0].size();
int numOfBranches99 = (int)(numOfBranches*0.99);
int combo99 = BinomialCoeff(numOfBranches,numOfBranches99);
expextedFreq = 0.01 / (double)combo99;
LOGnOUT(3,<<"Allowed fraction of high correlation. Computed with number of branch "<<numOfBranches<<" is "<<expextedFreq<<endl);
}
for (int binIndex = 0; binIndex < numOfBins; ++binIndex){
int indexOfIncrementation;
int numOfSamplesToDivideAmondBins = numOfSimulationPairs-numOfSamplesInBin;
if(gainLossOptions::_isSortVectorOfCorrelationsBinsByMidRateBound){
indexOfIncrementation = (int)(numOfSamplesToDivideAmondBins*binIndex/(numOfBins-1) );
indexOfSamplesForBinPrev = indexOfIncrementation +IndexOfValAboveNmin_min;
}
else
indexOfSamplesForBinPrev = indexOfSamplesForBin;
if(gainLossOptions::_isSortVectorOfCorrelationsBinsByMidRateBound)
Nmin_lower = *(_NminSortedSim[corIndex].begin()+indexOfSamplesForBinPrev); // Low is computed before bin-related ++ of index
else
Nmin_lower = Nmin_upper;
// +++ index for bin
if(gainLossOptions::_isDivideBinsByRange){
NminPerBin = Nmin_min +(w_range*binIndex);
bounds = equal_range (_NminSortedSim[corIndex].begin(), _NminSortedSim[corIndex].end(), NminPerBin); // assume sorted,
indexOfSamplesForBin = int(bounds.first - _NminSortedSim[corIndex].begin())-1; // Nmin_endIndex = int(bounds.second - _NminSortedSim[corIndex].begin());
}
else if(gainLossOptions::_isSortVectorOfCorrelationsBinsByMidRateBound)
indexOfSamplesForBin = indexOfIncrementation +numOfSamplesInBin +IndexOfValAboveNmin_min -1; //
else
indexOfSamplesForBin = (int)(numOfSimulationPairs*(binIndex+1)/numOfBins) +IndexOfValAboveNmin_min -1; // is -1 for bin=0
if(gainLossOptions::_isSortVectorOfCorrelationsBinsByLowerRateBound)
Nmin_lower = *(_NminSortedSim[corIndex].begin()+indexOfSamplesForBin);
// compute numOfSamples per Bin
if(gainLossOptions::_isSortVectorOfCorrelationsBinsByLowerRateBound){
numOfSamplesInCurrBin = indexOfSamplesForBin; //_NminSortedSim[corIndex].size()-indexOfSamplesForBinPrev;
Nmin_upper = Nmin_max; // UpperIsFixedAtMax
indexOfSamplesForBinUpper = indexOfSamplesForBin; //_NminSortedSim[corIndex].size()-1;
}
else{
numOfSamplesInCurrBin = indexOfSamplesForBin-indexOfSamplesForBinPrev;
Nmin_upper = *(_NminSortedSim[corIndex].begin()+indexOfSamplesForBin); // Up is computed after bin-related ++ of index;
indexOfSamplesForBinUpper = indexOfSamplesForBin;
}
if(numOfSamplesInCurrBin<10) // no samples in this range, for median
break;
if(gainLossOptions::_isSortVectorOfCorrelationsBinsByLowerRateBound && numOfSamplesInCurrBin<numOfSimulationPairs*0.05 ) // at least 5% of simulation to start new bin, otherwise previous was last
break;
if(gainLossOptions::_isSortVectorOfCorrelationsBinsByMidRateBound){
indexOfSamplesForBinMid = (int)(indexOfSamplesForBinUpper+indexOfSamplesForBinPrev)/2;
Nmin_mid = *(_NminSortedSim[corIndex].begin()+indexOfSamplesForBinMid);
}
// assign limits utility vector
if(gainLossOptions::_isSortVectorOfCorrelationsBinsByLowerRateBound)
_correlationSubSetsNminLimitValues[corIndex].push_back(Nmin_lower); // UpperIsFixedAtMax
else if(gainLossOptions::_isSortVectorOfCorrelationsBinsByMidRateBound)
_correlationSubSetsNminLimitValues[corIndex].push_back(Nmin_mid);
else
_correlationSubSetsNminLimitValues[corIndex].push_back(Nmin_upper);
_correlationsSubSets[corIndex][binIndex].resize(numOfSamplesInCurrBin);
copy(it+indexOfSamplesForBinPrev, it+indexOfSamplesForBinUpper ,_correlationsSubSets[corIndex][binIndex].begin());
sort(_correlationsSubSets[corIndex][binIndex].begin(),_correlationsSubSets[corIndex][binIndex].end());
extremeValDistribution distr;
MDOUBLE averageCorr = computeAverage(_correlationsSubSets[corIndex][binIndex]);
MDOUBLE stdCorr = computeStd(_correlationsSubSets[corIndex][binIndex]);
distr.fitParametersFromMoments(averageCorr, stdCorr);
_extremeValDistributions[corIndex].push_back(distr);
pair<vector<double>::iterator,vector<double>::iterator> boundsOne;
boundsOne = equal_range (_correlationsSubSets[corIndex][binIndex].begin(),_correlationsSubSets[corIndex][binIndex].end(), 0.99999);
int indexOfpairEq1_first = int(boundsOne.first - _correlationsSubSets[corIndex][binIndex].begin());
int numOfpairWithCorrEq1 = numOfSamplesInCurrBin - indexOfpairEq1_first;
boundsOne = equal_range (_correlationsSubSets[corIndex][binIndex].begin(),_correlationsSubSets[corIndex][binIndex].end(), 0.99);
int indexOfpairEq99_first = int(boundsOne.first - _correlationsSubSets[corIndex][binIndex].begin());
int numOfpairWithCorrEq99 = numOfSamplesInCurrBin - indexOfpairEq99_first;
boundsOne = equal_range (_correlationsSubSets[corIndex][binIndex].begin(),_correlationsSubSets[corIndex][binIndex].end(), 0.9);
int indexOfpairEq9_first = int(boundsOne.first - _correlationsSubSets[corIndex][binIndex].begin());
int numOfpairWithCorrEq9 = numOfSamplesInCurrBin - indexOfpairEq9_first;
// elevate Nmin Threshold if: (A) freqOfHighCorr was too high (B) freqOfHighCorr is reduced consistently with higher Nmin (C) new Nmin is lower than medianNminOfRealData
if(gainLossOptions::_isUpdateMinExpThresholdGivenHighFractionOfHighCorrel){
freqOfHighCorrPrev = freqOfHighCorr;
freqOfHighCorr = (double)numOfpairWithCorrEq99/numOfSamplesInCurrBin;
if(freqOfHighCorr>expextedFreq && freqOfHighCorr<freqOfHighCorrPrev && Nmin_lower < medianNminOfRealData){
LOGnOUT(3,<<"Fraction of high (0.99) correlation prev="<<freqOfHighCorrPrev<<" reduced to "<<freqOfHighCorr<<endl);
LOGnOUT(3,<<" Update MinExpThreshold Given highCorrlation in previous Nmin to "<<Nmin_lower<<endl);
Parameters::updateParameter("_minExpThresholdForPValComputationForCorrelatingPair",double2string(Nmin_lower).c_str());
}
if(freqOfHighCorr>freqOfHighCorrPrev){ // revert back
LOGnOUT(3,<<"Fraction of high (0.99) correlation prev="<<freqOfHighCorrPrev<<" elevated to "<<freqOfHighCorr<<endl);
LOGnOUT(3,<<" Revert to "<<minExpTBeforeChange<<endl);
Parameters::updateParameter("_minExpThresholdForPValComputationForCorrelatingPair",double2string(minExpTBeforeChange).c_str());
}
}
if(Nmin_lower>=medianNminOfRealData)
numberOfHighCorrInSimulationOfMedianNminBin = max((double)numberOfHighCorrInSimulationOfMedianNminBin,(double)numOfpairWithCorrEq1);
*simCorrelStream<<"Bin = "<< binIndex+1 <<"\n";
printCorrelationsFrequencies(_correlationsSubSets[corIndex][binIndex], simCorrelStream);
LOGnOUT(4,<<binIndex+1<<" Bin.\t#samples=\t"<<numOfSamplesInCurrBin<<".\tFrom rate:\t"<<Nmin_lower<<"\t-\t"<<Nmin_upper
<<".\tis with corr:\t"<<*_correlationsSubSets[corIndex][binIndex].begin()<<"\t-\t"<<*(_correlationsSubSets[corIndex][binIndex].end()-1)
<<"\tAve=\t"<<computeAverage(_correlationsSubSets[corIndex][binIndex])<<"\tMedian=\t"<< computeMedian(_correlationsSubSets[corIndex][binIndex])
<<"\tratioOfpairWithCorrEq1=\t"<<(double)numOfpairWithCorrEq1/numOfSamplesInCurrBin<<" ("<<numOfpairWithCorrEq1<<")"
<<"\tratioOfpairWithCorrEq0.99=\t"<<(double)numOfpairWithCorrEq99/numOfSamplesInCurrBin<<" ("<<numOfpairWithCorrEq99<<")"
<<"\tratioOfpairWithCorrEq0.9=\t"<<(double)numOfpairWithCorrEq9/numOfSamplesInCurrBin<<" ("<<numOfpairWithCorrEq9<<")"<<endl);
if(gainLossOptions::_isSortVectorOfCorrelationsBinsByMidRateBound)
LOGnOUT(4,<<" Mid rate= "<<Nmin_mid<<endl);
// Util
//bool isPrintCorrListForEachBin = false;
//if(isPrintCorrListForEachBin){
// string debugS = _outDir + "//"+int2string(corIndex)+int2string(binIndex)+ "Rofbins.txt"; // D
// ofstream debugSStream(debugS.c_str()); // D
// debugSStream<<" Bin "<<binIndex<<" from rate: "<<Nmin_lower<<" to "<<Nmin_max<<endl;
// for(vector<double>::iterator it = _correlationsSubSets[corIndex][binIndex].begin(); it<_correlationsSubSets[corIndex][binIndex].end();++it){
// debugSStream<<*it<<"\n";
// }
//}
}
}
_pairWiseCorrelationsAndNminSim.clear(); // clear huge vector when not required
time(&t2);
LOGnOUT(4,<<"TIME = "<<(t2-t1)/60.0<<" minutes"<<endl);
return numberOfHighCorrInSimulationOfMedianNminBin;
}
/********************************************************************************************
*********************************************************************************************/
void computeCorrelations::printCorrelationsFrequencies(Vdouble& correlationsVecSorted, ofstream* simCorrelStream){
float valsToCheck [] = {0.95,0.99,0.999,0.999999999}; // NOTE - if change size => change in loop!
int numOfCorrelations = correlationsVecSorted.size();
pair<vector<double>::iterator,vector<double>::iterator> bounds;
if(!simCorrelStream==NULL)
*simCorrelStream<<"Corr eq/above\tratioOfCorAbove\tnumAboveEq\n";
else
LOGnOUT(4,<<"Corr eq/above\tratioOfCorAbove\tnumAboveEq"<< endl);
for (MDOUBLE val=-0.9; val<=0.9; val+=0.1){
bounds = equal_range (correlationsVecSorted.begin(), correlationsVecSorted.end(), val);
int lastIndexWithPValBiggerThanThreshold = int(bounds.first - correlationsVecSorted.begin());
int numAboveEq = numOfCorrelations-lastIndexWithPValBiggerThanThreshold;
MDOUBLE ratioOfCorAbove = double(numAboveEq)/numOfCorrelations;
MDOUBLE rounded = floorf(val * pow(10.0,4) + 0.5) / pow(10.0,4); // if not rounded, perfect correlations may return 1.000002, for example
if(!simCorrelStream==NULL)
*simCorrelStream<<rounded<<"\t"<<ratioOfCorAbove<<"\t("<<numAboveEq<<")\n";
else
LOGnOUT(4,<<rounded<<"\t"<<ratioOfCorAbove<<"\t("<<numAboveEq<<")"<< endl);
}
for (int i=0; i<4; ++i){
bounds = equal_range (correlationsVecSorted.begin(), correlationsVecSorted.end(), valsToCheck[i]);
int lastIndexWithPValBiggerThanThreshold = int(bounds.first - correlationsVecSorted.begin());
int numAboveEq = numOfCorrelations-lastIndexWithPValBiggerThanThreshold;
MDOUBLE ratioOfCorAbove = double(numAboveEq)/numOfCorrelations;
if(!simCorrelStream==NULL)
*simCorrelStream<<valsToCheck[i]<<"\t"<<ratioOfCorAbove<<"\t("<<numAboveEq<<")\n";
else
LOGnOUT(4,<<valsToCheck[i]<<"\t"<<ratioOfCorAbove<<"\t("<<numAboveEq<<")"<< endl);
}
if(!simCorrelStream==NULL)
*simCorrelStream<<"\n";
else
LOGnOUT(4,<< endl);
}
/********************************************************************************************
*********************************************************************************************/
int computeCorrelations::computedCorrelationsPValBasedOnSimulatedDataCoMapBins(VVVdouble& correlationPerSitePerPosReal,vector<vector<bool> >& isComputePairWithRateAboveNim,VVVVdouble& expChanges_PosXYReal, VVVdouble& correlationPerSitePerPos_Pval
,map<int, map<int, map<string, map<string, MDOUBLE > > > >& correlationsData, Vdouble& rate4siteReal, Vint& selectedSites, Vint& numOfGapsTillSite, Vint& evolvingSites, bool isLastIteration){
LOGnOUT(4,<<endl<<"computedCorrelationsPValBasedOnSimulatedDataCoMapBins..."<<endl);
time_t t1,t2;
time(&t1);
int numOfpairsWithRateAboveMinRequiredExp = 0;
string pairWiseCorrelationsAndNmin = _outDir + "//" + "pairWiseCorrelationsAndNmin.txt";
ofstream corrSigStream(pairWiseCorrelationsAndNmin.c_str());
corrSigStream<<"site_A"<<"\t"<<"site_B"<<"\t"<<"Nmin_obs"<<"\t"<<"Corr_obs"<<"\n";
int numberOfcorrelationVec = correlationPerSitePerPosReal.size();
int numOfSites_A = correlationPerSitePerPosReal[0].size();
int numOfSites_B = correlationPerSitePerPosReal[0][0].size();
_corrVector.resize(numberOfcorrelationVec);
VVVdouble map_PosXY;
if(rate4siteReal.size()==0)
computeRateValPerPos(expChanges_PosXYReal,map_PosXY);
for (int corIndex = 0; corIndex <numberOfcorrelationVec; ++corIndex){
LOGnOUT(4,<<" *** corIndex="<<corIndex<<endl);
int typeIndex = corIndex % _EventTypes.size(); // in case both Spearman and pearson are used
int numOfpairsWithRateBelowSimulation = 0;
int numOfpairsWithRateAboveSimulation = 0;
int numOfpairsWithRateBelowMinRequiredExp = 0;
int pairNum = 0;
bool computePValForPairWithNminAboveMin = true;
MDOUBLE minExpThresholdForPValComputationForCorrelatingPair;
minExpThresholdForPValComputationForCorrelatingPair = Parameters::getFloat("_minExpThresholdForPValComputationForCorrelatingPair");
for (int site_A = 0; site_A <numOfSites_A; ++site_A){
int site_A_original = selectedSites[site_A];
int site_A_RemovedGaps = site_A_original- numOfGapsTillSite[site_A];
if((site_A)%100==0)
cout<<"*";
for (int site_B = site_A; site_B <numOfSites_B; ++site_B){
int site_B_original = evolvingSites[site_B];
computePValForPairWithNminAboveMin = true; // reset as new for each pair
if(site_A_original == site_B_original){
correlationPerSitePerPos_Pval[corIndex][site_A][site_B] = 0;
continue;
}
pairNum++;
MDOUBLE Corr_obs = correlationPerSitePerPosReal[corIndex][site_A][site_B]; // Real correlation from Input variable
_corrVector[corIndex].push_back(Corr_obs);
MDOUBLE Nmin_obs = 0;
if(rate4siteReal.size()==0)
Nmin_obs = computeNminPerPair(site_A_RemovedGaps, site_B, typeIndex, map_PosXY);
else
Nmin_obs = min(rate4siteReal[site_A_original] , rate4siteReal[site_B_original]);
if(gainLossOptions::_isPrintpairWiseCorrelationsAndNmin)
corrSigStream<<site_A_original+1<<"\t"<<site_B_original+1<<"\t"<<Nmin_obs<<"\t"<<Corr_obs<<"\n";
// find the bin with highest simulated Rate suitable of obsNmin
int binForNmin_obs = 0;
while(Nmin_obs>=_correlationSubSetsNminLimitValues[corIndex][binForNmin_obs] && binForNmin_obs<_correlationSubSetsNminLimitValues[corIndex].size()-1)
binForNmin_obs++;
if(Nmin_obs < minExpThresholdForPValComputationForCorrelatingPair){
computePValForPairWithNminAboveMin = false;
numOfpairsWithRateBelowMinRequiredExp++;
}
if(Nmin_obs<*(_NminSortedSim[corIndex].begin())){
LOGnOUT(7,<<"WARN: low Nmin_obs="<<Nmin_obs<<" Since no simulation support this rate, pVal computed as "<<1.0/_numOfSamplesInLowRateFirstBin<<" for site_A="<<site_A_original<<" and site_B="<<site_B_original<<" with corr="<<Corr_obs<<endl);
//computePValForPairWithNminAboveMin = false;
if(corIndex == 0) // done for only one type of correlation
numOfpairsWithRateBelowSimulation++;
}
if(Nmin_obs> *(_NminSortedSim[corIndex].end()-1)){
LOGnOUT(7,<<"WARN: high Nmin_obs="<<Nmin_obs<<" pVal is computed with lower Nmin simulations as referece for site_A="<<site_A_original<<" and site_B="<<site_B_original<<" with corr="<<Corr_obs<<endl);
if(corIndex == 0) // done for only one type of correlation
numOfpairsWithRateAboveSimulation++;
}
MDOUBLE pVal = 0.99;
MDOUBLE pValEVD = 0.99;
int NumberOfSimulationsInRange = 0;
int NumberOfSimulationPointsMoreExtremeOrEqToCorr = 0;
int prevNumberOfSimulationsInRange = 1;
int prevNumberOfSimulationPointsMoreExtremeOrEqToCorr = 1;
int numOfBinsWithLowerSignificance = 0; // allow 2 "bin-iteration" even with lower significance to mitigate chance of "missing" higher significance in lower bin
bool isNextLowerBinAllowed = true;
isComputePairWithRateAboveNim[site_A][site_B] = computePValForPairWithNminAboveMin;
if(computePValForPairWithNminAboveMin){
//MDOUBLE pVal_prev = 1;
//while(binForNmin_obs>=0 && isNextLowerBinAllowed ){
//pVal_prev = pVal;
prevNumberOfSimulationsInRange = NumberOfSimulationsInRange;
prevNumberOfSimulationPointsMoreExtremeOrEqToCorr = NumberOfSimulationPointsMoreExtremeOrEqToCorr;
NumberOfSimulationsInRange = _correlationsSubSets[corIndex][binForNmin_obs].size();
NumberOfSimulationPointsMoreExtremeOrEqToCorr = 0;
pair<vector<double>::iterator,vector<double>::iterator> bounds;
vector<double>::iterator startCorV = _correlationsSubSets[corIndex][binForNmin_obs].begin();
vector<double>::iterator endCorV = _correlationsSubSets[corIndex][binForNmin_obs].end();
bounds = equal_range (startCorV, endCorV, Corr_obs);
//cout << "bounds at positions " << int(bounds.first - startCorV) << " and " << int(bounds.second - startCorV) << endl;
NumberOfSimulationPointsMoreExtremeOrEqToCorr = NumberOfSimulationsInRange-int(bounds.first - startCorV);
if(gainLossOptions::_isConsiderNegativeCorrelations){
int NumberOfSimulationPointsMoreExtremeOrEqToCorrNegative = int(bounds.second - startCorV);
NumberOfSimulationPointsMoreExtremeOrEqToCorr = min(NumberOfSimulationPointsMoreExtremeOrEqToCorr, NumberOfSimulationPointsMoreExtremeOrEqToCorrNegative);
pVal = (double(NumberOfSimulationPointsMoreExtremeOrEqToCorr+1)/(NumberOfSimulationsInRange+1)) *2; // multiplied by 2, since it's two-sided
}else
pVal = double(NumberOfSimulationPointsMoreExtremeOrEqToCorr+1)/(NumberOfSimulationsInRange+1);
if(gainLossOptions::_isCompExtremeValDistribution)
pValEVD = 1- _extremeValDistributions[corIndex][binForNmin_obs].getCDF(Corr_obs);
//if(pVal_prev<pVal){
// pVal= pVal_prev;
// NumberOfSimulationsInRange = prevNumberOfSimulationsInRange;
// NumberOfSimulationPointsMoreExtremeOrEqToCorr = prevNumberOfSimulationPointsMoreExtremeOrEqToCorr;
// ++numOfBinsWithLowerSignificance; // the upper bin had more significant pVal. Count few such "steps down" and quite
//}
//binForNmin_obs--;
//if(!gainLossOptions::_isSortVectorOfCorrelationsBinsByLowerRateBound || (pVal<pVal_prev && numOfBinsWithLowerSignificance<3))
// isNextLowerBinAllowed = false;
//}
}
else
pVal = 1; // value that is not possible with computation
// Only pairs with pVal < cuttoff are re-computed in iterations
if(pVal<=gainLossOptions::_pValueCutOffForBootStrap || gainLossOptions::_selectedSitesForCorrelation!="" ){ //TEMP for selected sites, fill map for all correlations
//cout<<site_A<<" "<<site_B<<" "<<pVal<<" "<<Nmin_obs<<" "<<Corr_obs<<endl;
correlationsData[site_A_original][site_B_original][int2string(corIndex)]["R"] = Corr_obs;
correlationsData[site_A_original][site_B_original][int2string(corIndex)]["Rate"] = Nmin_obs;
correlationsData[site_A_original][site_B_original][int2string(corIndex)]["SimTotal"] += NumberOfSimulationsInRange;
correlationsData[site_A_original][site_B_original][int2string(corIndex)]["SimExtreme"] += NumberOfSimulationPointsMoreExtremeOrEqToCorr;
pVal = (correlationsData[site_A_original][site_B_original][int2string(corIndex)]["SimExtreme"]+1)/(correlationsData[site_A_original][site_B_original][int2string(corIndex)]["SimTotal"]+1);
correlationsData[site_A_original][site_B_original][int2string(corIndex)]["pVal"] = pVal;
// take the higher pVal from all iterations
bool isFirstEstimation = false;
if(correlationsData[site_A_original][site_B_original][int2string(corIndex)]["SimTotal"] == NumberOfSimulationsInRange)
isFirstEstimation = true;
if(gainLossOptions::_isCompExtremeValDistribution){
if(!isFirstEstimation)
pValEVD = max(pValEVD, correlationsData[site_A_original][site_B_original][int2string(corIndex)]["pValEVD"]);
correlationsData[site_A_original][site_B_original][int2string(corIndex)]["pValEVD"] = pValEVD;
}
}
if(gainLossOptions::_selectedSitesForCorrelation==""){
correlationPerSitePerPos_Pval[corIndex][site_A][site_B] = pVal;
correlationPerSitePerPos_Pval[corIndex][site_B][site_A] = pVal;
}
}
}
cout<<"\n";
numOfpairsWithRateAboveMinRequiredExp = pairNum-numOfpairsWithRateBelowMinRequiredExp;
LOGnOUT(4,<<"numOfpairs With Rate - Below Simulation="<<numOfpairsWithRateBelowSimulation<<" - Above Simulation="<<numOfpairsWithRateAboveSimulation<<endl);
if(isLastIteration){
LOGnOUT(4,<<"numOfpairs="<<pairNum<<endl);
if(Parameters::getFloat("_minExpThresholdForPValComputationForCorrelatingPair") > 0){
LOGnOUT(4,<<"numOfpairs With Rate below minimal Threshold="<<Parameters::getFloat("_minExpThresholdForPValComputationForCorrelatingPair")<<" are "<<numOfpairsWithRateBelowMinRequiredExp<<endl);
}
LOGnOUT(4,<<"\nReal Data correlations frequencies:"<<endl);
LOGnOUT(4,<<"num of correlations="<<_corrVector[corIndex].size()<<endl);
sort(_corrVector[corIndex].begin(),_corrVector[corIndex].end());
printCorrelationsFrequencies(_corrVector[corIndex]);
}
}
time(&t2);
LOGnOUT(4,<<"TIME = "<<(t2-t1)/60.0<<" minutes"<<endl<<endl);
return numOfpairsWithRateAboveMinRequiredExp;
}
/********************************************************************************************
*********************************************************************************************/
void computeCorrelations::computedCorrelationsRankBasedOnSimulatedData(const Vint& selectedPositions, VVVdouble& correlationPerSitePerPos, VVVdouble& correlationPerSitePerPos_Simulations, VVVdouble& correlationPerSitePerPos_Pval){
LOGnOUT(4,<<endl<<"computedCorrelationsRankBasedOnSimulatedData..."<<endl);
time_t t1,t2;
time(&t1);
int numberOfcorrelationVec = correlationPerSitePerPos.size();
int numOfSites_A = correlationPerSitePerPos[0].size();
int numOfSites_B = correlationPerSitePerPos[0][0].size();
int numberOfSimulation = correlationPerSitePerPos_Simulations[0][0].size();
for (int corIndex = 0; corIndex <numberOfcorrelationVec; ++corIndex){
for (int site_A = 0; site_A <numOfSites_A; ++site_A){
int selectedSite = site_A; //??
for (int site_B = 0; site_B <numOfSites_B; ++site_B){
MDOUBLE rank = 0; //numberOfSimulation
MDOUBLE correlVal = correlationPerSitePerPos[corIndex][selectedSite][site_B];
for (int pos = 0; pos<numberOfSimulation; ++pos){
MDOUBLE correlSim = correlationPerSitePerPos_Simulations[corIndex][selectedSite][pos];
if((correlVal>correlSim && correlVal>=0 ) || (correlVal<correlSim && correlVal<0 ))
rank++; // --
}
//MDOUBLE pVal = double((rank+1)/numberOfSimulation);
correlationPerSitePerPos_Pval[corIndex][selectedSite][site_B] = rank; // pVal
}
}
}
time(&t2);
LOGnOUT(4,<<"TIME = "<<(t2-t1)/60.0<<" minutes"<<endl<<endl);
}
/********************************************************************************************
fill correlationPerSitePerPos_Pval,
Compute pVal for correlationPerSitePerPos, taking into account expChanges_PosXY
*********************************************************************************************/
void computeCorrelations::computedCorrelationsPValBasedOnSimulatedDataCoMap(VVVdouble& correlationPerSitePerPosReal,VVVVdouble& expChanges_PosXYReal, VVVdouble& correlationPerSitePerPos_Pval){
LOGnOUT(4,<<endl<<"computedCorrelationsRankBasedOnSimulatedDataCoMap..."<<endl);
time_t t1,t2;
time(&t1);
MDOUBLE theWfactor = 5;
int numberOfcorrelationVec = correlationPerSitePerPosReal.size();
int numOfSites_A = correlationPerSitePerPosReal[0].size();
int numOfSites_B = correlationPerSitePerPosReal[0][0].size();
VVVdouble map_PosXY;
computeRateValPerPos(expChanges_PosXYReal,map_PosXY);
for (int corIndex = 0; corIndex <numberOfcorrelationVec; ++corIndex){
LOGnOUT(4,<<" *** corIndex="<<corIndex<<endl);
MDOUBLE Nmin_min = *_NminSortedSim[corIndex].begin();
MDOUBLE Nmin_max = *(_NminSortedSim[corIndex].end()-1);
MDOUBLE w_range = (Nmin_max-Nmin_min)/theWfactor;
for (int site_A = 0; site_A <numOfSites_A; ++site_A){
if((site_A)%100==0)
cout<<"*";
for (int site_B = site_A; site_B <numOfSites_B; ++site_B){
if(site_A == site_B){
correlationPerSitePerPos_Pval[corIndex][site_A][site_B] = 0;
continue;
}
MDOUBLE Corr_obs = correlationPerSitePerPosReal[corIndex][site_A][site_B]; // Real correlation from Input variable
int typeIndex = corIndex%_EventTypes.size();
string type = _EventTypes[typeIndex];
int from = _EventTypesFromTo[type]["from"];
int to = _EventTypesFromTo[type]["to"];
MDOUBLE Nmin_obs = min(map_PosXY[site_A][from][to],map_PosXY[site_B][from][to]); // Real Nmin from Input variable
MDOUBLE Nmin_lower = Nmin_obs-w_range/2;
MDOUBLE Nmin_upper = Nmin_obs+w_range/2;
pair<vector<double>::iterator,vector<double>::iterator> bounds;
bounds = equal_range (_NminSortedSim[corIndex].begin(), _NminSortedSim[corIndex].end(), Nmin_lower);
int Nmin_startIndex = int(bounds.first - _NminSortedSim[corIndex].begin());
bounds = equal_range (_NminSortedSim[corIndex].begin(), _NminSortedSim[corIndex].end(), Nmin_upper);
int Nmin_endIndex = int(bounds.second - _NminSortedSim[corIndex].begin());
//cout <<Nmin_obs<< " is rang is " << Nmin_startIndex<< " and " << Nmin_endIndex << endl;
int NumberOfSimulationsInRange = Nmin_endIndex-Nmin_startIndex+1;
//for (int i = Nmin_startIndex; i < Nmin_endIndex; ++i){
// CorrelationsSubSet.push_back(_pairWiseCorrelationsAndNminSim[corIndex][1][i]); // simulations based data
//}
//sort(CorrelationsSubSet.begin(),CorrelationsSubSet.end());
//bounds = equal_range (CorrelationsSubSet.begin(), CorrelationsSubSet.end(), Corr_obs);
//int NumberOfSimulationPointsGreaterOrEqToCorr = NumberOfSimulationsInRange-int(bounds.first - CorrelationsSubSet.begin());
//cout <<"corr= "<<Corr_obs<<" is ranked " << NumberOfSimulationPointsGreaterOrEqToCorr<< " out of " << NumberOfSimulationsInRange << endl;
int NumberOfSimulationPointsGreaterOrEqToCorr =0;
for (int i = 0; i<NumberOfSimulationsInRange; ++i){
MDOUBLE correlSim = _pairWiseCorrelationsAndNminSim[corIndex][0][i+Nmin_startIndex];
if(Corr_obs<=correlSim && Corr_obs>=0 )
NumberOfSimulationPointsGreaterOrEqToCorr++; // --
if(gainLossOptions::_isConsiderNegativeCorrelations && Corr_obs<0 && Corr_obs>=correlSim )
NumberOfSimulationPointsGreaterOrEqToCorr++;
}
MDOUBLE pVal = double(NumberOfSimulationPointsGreaterOrEqToCorr+1)/(NumberOfSimulationsInRange+1);
//cout << "pVal="<<pVal<<endl;
correlationPerSitePerPos_Pval[corIndex][site_A][site_B] = pVal;
correlationPerSitePerPos_Pval[corIndex][site_B][site_A] = pVal;
}
}
cout<<"\n";
}
time(&t2);
LOGnOUT(4,<<"TIME = "<<(t2-t1)/60.0<<" minutes"<<endl<<endl);
}
/********************************************************************************************
*********************************************************************************************/
void computeCorrelations::produceSymeticMatrix(VVVdouble& correlationPerSitePerPos, bool isMin){
LOGnOUT(4,<<endl<<"produceSymeticMatrix..."<<endl);
int numberOfcorrelationVec = correlationPerSitePerPos.size();
int numOfSites_A = correlationPerSitePerPos[0].size();
int numOfSites_B = correlationPerSitePerPos[0][0].size();
if(!numOfSites_A == numOfSites_B){
LOGnOUT(6, <<"WARN dim not equal in produceSymeticMatrix "<<numOfSites_A<<" vs "<<numOfSites_B<<endl);
return;
}
for (int corIndex = 0; corIndex <numberOfcorrelationVec; ++corIndex){
for (int site_A = 0; site_A <numOfSites_A; ++site_A){
int selectedSite = site_A; //??
for (int site_B = 0; site_B <numOfSites_B; ++site_B){
MDOUBLE minVal = correlationPerSitePerPos[corIndex][selectedSite][site_B];
if(correlationPerSitePerPos[corIndex][site_B][selectedSite]<minVal)
correlationPerSitePerPos[corIndex][selectedSite][site_B] = correlationPerSitePerPos[corIndex][site_B][selectedSite];
}
}
}
}
/********************************************************************************************
PrintExpPerPosPerBranchMatrix (CoMap input)
NOTE!!! this version only consist of gain or loss values
Alternatively, (1) abs(gain+loss) (2) gain-loss (3) separate gain and loss matrices
*********************************************************************************************/
void computeCorrelations::printComputedCorrelationsData(const bool isNormalizeForBranch, const bool correlationForZscore
,map<int, map<int, map<string, map<string, MDOUBLE > > > >& correlationsData, Vdouble& T_BH, bool isPairsAboveBH)
{
LOGnOUT(4,<<endl<<"print Correlation data All significant sites..."<<endl);
int precisionCorr = 8;
string pairsAboveBH = "";
if(isPairsAboveBH)
pairsAboveBH = ".pairsAboveBH";
string corrSigSites = _outDir + "//" + "significantCorrelations.isNormForBr."+int2string(isNormalizeForBranch)+pairsAboveBH + ".txt";
ofstream corrSigStream(corrSigSites.c_str());
corrSigStream.precision(precisionCorr);
// _correlationsData["i"]["j"]["type"]["R" / "pVal" / "qVal" / "Nmin"]
typedef map<int,map<int, map<string, map<string, MDOUBLE> > > >::iterator it_A;
typedef map<int, map<string, map<string, MDOUBLE> > >::iterator it_B;
typedef map<string, map<string, MDOUBLE> >::iterator it_CorrT;
typedef map<string, MDOUBLE>::iterator it_valT;
it_A it1 = correlationsData.begin(); // COG A
it_B it2 = it1->second.begin(); // COG B
it_CorrT it3 = it2->second.begin(); // corrType
it_valT it4 = it3->second.begin(); // valType, val (["R" / "pVal" / "qVal" / "Nmin"])
map<int, map<int,bool> > isPairWithSignificantPValAfterBH;
//if(!isPairsAboveBH){
for(it1 = correlationsData.begin(); it1 != correlationsData.end(); it1++) {
for(it2 = it1->second.begin(); it2 != it1->second.end(); it2++) {
if( gainLossOptions::_isAllCorrTypeReqruiedToBeSignificant)
isPairWithSignificantPValAfterBH[it1->first][it2->first] = true;
else
isPairWithSignificantPValAfterBH[it1->first][it2->first] = false;
for(it3 = it2->second.begin(); it3 != it2->second.end(); it3++) {
for(it4 = it3->second.begin(); it4 != it3->second.end(); it4++) {
if( gainLossOptions::_isAllCorrTypeReqruiedToBeSignificant && it4->first == "pVal" && it4->second > T_BH[ string2double(it3->first)])
isPairWithSignificantPValAfterBH[it1->first][it2->first] = false; // sufficient that one corType results with pVal>BH[corType] not to print
else if (! gainLossOptions::_isAllCorrTypeReqruiedToBeSignificant && it4->first == "pVal" && it4->second<= T_BH[string2double(it3->first)])
isPairWithSignificantPValAfterBH[it1->first][it2->first] = true; // sufficient that one corType results with pVal<=BH[corType] to print
}
}
}
}
//}
// Reset, before printing Header
it1 = correlationsData.begin();
it2 = it1->second.begin();
// print Header
corrSigStream<<"posA"<<"\t"<<"posB"<<"\t";
for(it3 = it2->second.begin(); it3 != it2->second.end(); it3++) {
for(it4 = it3->second.begin(); it4 != it3->second.end(); it4++) { // iterate over all valTypes (["R" / "pVal" / "qVal" / "Nmin"])
corrSigStream<<it3->first<<"_"<<it4->first<<"\t"; // the combination results with e.g., 0_R 0_pVal 1_R 1_pVal
}
}
corrSigStream<<"\n";
// print pair-specific computations
for(it1 = correlationsData.begin(); it1 != correlationsData.end(); it1++) {
for(it2 = it1->second.begin(); it2 != it1->second.end(); it2++) {
if(/*isPairsAboveBH ||*/ isPairWithSignificantPValAfterBH[it1->first][it2->first])
corrSigStream<<it1->first+1<<"\t"<<it2->first+1<<"\t";
for(it3 = it2->second.begin(); it3 != it2->second.end(); it3++) {
for(it4 = it3->second.begin(); it4 != it3->second.end(); it4++) {
if(/*isPairsAboveBH || */isPairWithSignificantPValAfterBH[it1->first][it2->first])
corrSigStream<<it4->second<<"\t";
}
}
if(/*isPairsAboveBH ||*/ isPairWithSignificantPValAfterBH[it1->first][it2->first])
corrSigStream<<"\n";
}
}
corrSigStream.close();
}
/********************************************************************************************
PrintExpPerPosPerBranchMatrix (CoMap input)
NOTE!!! this version only consist of gain or loss values
Alternatively, (1) abs(gain+loss) (2) gain-loss (3) separate gain and loss matrices
*********************************************************************************************/
void computeCorrelations::printComputedCorrelations(const Vint& selectedPositions,const Vint& evolvingSites, const bool isNormalizeForBranch, const bool correlationForZscore, VVVdouble* correlationsVec, string* valType)
{
// OLD version
bool isOldAllAgainstAllVersion = false;
bool isTransform = false;
bool isMinForPrint = true;
bool isPearson = false;
int precisionCorr = 8;
MDOUBLE minForPrint = 0.1; // max =1
string pVal = "";
if(valType)
pVal = *valType;
VVVdouble correlationsVec2print;
if(correlationsVec){
correlationsVec2print = *correlationsVec;
LOGnOUT(4, <<"Print correlation for external data"<<endl);
}
else
correlationsVec2print = _correlationsPerSitePerPosVec;
int numOfpositions = correlationsVec2print[0][0].size(); // assume all correlation vectors the same size
int numOfbranches = _tr.getNodesNum()-1; // was -1, minus the root node
//// Mapping vectors
LOGnOUT(6, <<"Copy events vectors"<<endl);
//////////////////////////////////////////////////////////////////////////
if(!gainLossOptions::_printComputedCorrelationsAllSites){
LOGnOUT(4,<<"print Correlations selected sites..."<<endl);
for (int selectedSiteIndex = 0; selectedSiteIndex <selectedPositions.size(); ++selectedSiteIndex){
int selectedSite = selectedPositions[selectedSiteIndex];
Vdouble MeansVal(_isPearson.size()*_EventTypes.size());
Vdouble SdVal(_isPearson.size()*_EventTypes.size());
// for each selectedSite a new file is created
LOGnOUT(4, <<"Correlations with site="<<selectedSite<<" With NormalizeForBranch "<<isNormalizeForBranch<<" With correlationForZscore "<<correlationForZscore<<endl);
string corrPerSite = _outDir + "//" + "selectedCorr.Site"+ int2string(selectedSite+1)+ ".isNormForBr."+int2string(isNormalizeForBranch)+pVal+/*+ ".isCorrForZ."+int2string(correlationForZscore)*/+ ".txt";
ofstream corrPerSiteStream(corrPerSite.c_str());
corrPerSiteStream.precision(precisionCorr);
corrPerSiteStream<<"# "<<selectedSite+1<<"\n";
int vecIndex=0;
for (vector<bool>::iterator it=_isPearson.begin() ; it < _isPearson.end(); it++ ){
int typeIndex=0;
for (vector<string>::iterator evnt=_EventTypes.begin() ; evnt < _EventTypes.end(); evnt++ ){ // could be done with int
LOGnOUT(6, <<"Compute correl isPearson="<<*it<<" with type="<<*evnt<<endl);
MeansVal[vecIndex] = computeAverage(correlationsVec2print[vecIndex][selectedSiteIndex]);
SdVal[vecIndex] = computeStd(correlationsVec2print[vecIndex][selectedSiteIndex]);
corrPerSiteStream<<"# Correlation isSpearman="<<*it<<" with type="<<*evnt<<" Mean="<<MeansVal[vecIndex]<<" Sd="<<SdVal[vecIndex]<<"\n";
typeIndex++;
vecIndex++;
}
}
corrPerSiteStream<<"pos";
vecIndex=0;
for (vector<bool>::iterator it=_isPearson.begin() ; it < _isPearson.end(); it++ ){
for (vector<string>::iterator evnt=_EventTypes.begin() ; evnt < _EventTypes.end(); evnt++ ){ // could be done with int
corrPerSiteStream<<"\t"<<*evnt+int2string(*it);
vecIndex++;
}
}
corrPerSiteStream<<"\n";
for (int posIndex = 0; posIndex<numOfpositions; ++posIndex){
int evolvingSite = evolvingSites[posIndex];
if(selectedSite == evolvingSite) // since selectedSite starts from 1
continue;
bool isPosOneOfSelectedSites = false;
if(gainLossOptions::_isIgnoreCorrelationAmongSelectedSites){
for (int selectedSiteI = 0; selectedSiteI <selectedPositions.size(); ++selectedSiteI){
int selectedS = selectedPositions[selectedSiteI];
if(selectedS == evolvingSite){
isPosOneOfSelectedSites = true;
continue;
}
}
if(isPosOneOfSelectedSites)
continue;
}
corrPerSiteStream<<evolvingSite+1;
int vecIndex=0;
for (vector<bool>::iterator it=_isPearson.begin() ; it < _isPearson.end(); it++ ){
for (vector<string>::iterator evnt=_EventTypes.begin() ; evnt < _EventTypes.end(); evnt++ ){ // could be done with int
corrPerSiteStream<<"\t"<<correlationsVec2print[vecIndex][selectedSiteIndex][posIndex];
vecIndex++;
}
}
corrPerSiteStream<<"\n";
}
}
}
////////////////////////////////////////////////////////////////////////// All-against-all different format
else if(isOldAllAgainstAllVersion){
LOGnOUT(4,<<endl<<"print Correlations All sites (old version)..."<<endl);
string corrAllSites = _outDir + "//" + "allCorrelations.isNormForBr."+int2string(isNormalizeForBranch)+pVal+/* ".isCorrForZ."+int2string(correlationForZscore)+*/ ".txt";
ofstream corrAllStream(corrAllSites.c_str());
corrAllStream.precision(precisionCorr);
corrAllStream<<"#COGA"<<"\t"<<"COGB"<<"\t"<<"posGainGain"<<"\t"<<"posLossLoss"<<"\t"<<"negGainGain"<<"\t"<<"negLossLoss"<<"\n";
for (int selectedSiteIndex = 0; selectedSiteIndex <selectedPositions.size(); ++selectedSiteIndex){
int selectedSite = selectedPositions[selectedSiteIndex];
MDOUBLE meanCorrGainGain = computeAverage(_correlationsPerSitePerPosVec[0][selectedSiteIndex]);
MDOUBLE stdCorrGainGain = computeStd(_correlationsPerSitePerPosVec[0][selectedSiteIndex]);
MDOUBLE meanCorrLossLoss = computeAverage(_correlationsPerSitePerPosVec[1][selectedSiteIndex]);
MDOUBLE stdCorrLossLoss = computeStd(_correlationsPerSitePerPosVec[1][selectedSiteIndex]);
for (int posIndex = 0; posIndex<numOfpositions; ++posIndex){
int evolvingSite = evolvingSites[posIndex];
if(selectedSite == evolvingSite)
continue;
MDOUBLE correlationGainGain = _correlationsPerSitePerPosVec[0][selectedSiteIndex][posIndex];
MDOUBLE correlationLossLoss = _correlationsPerSitePerPosVec[1][selectedSiteIndex][posIndex];
if(correlationForZscore){
correlationGainGain = (correlationGainGain - meanCorrGainGain)/stdCorrGainGain;
correlationLossLoss = (correlationLossLoss - meanCorrLossLoss)/stdCorrLossLoss;
}
if(isMinForPrint && max(abs(correlationGainGain),abs(correlationLossLoss))<minForPrint)
continue;
MDOUBLE posCorrelationGainGain = (correlationGainGain >=0) ? correlationGainGain*1000-1 : 0;
MDOUBLE negCorrelationGainGain = (correlationGainGain < 0) ? correlationGainGain*1000-1 : 0;
MDOUBLE posCorrelationLossLoss = (correlationLossLoss >=0) ? correlationLossLoss*1000-1 : 0;
MDOUBLE negCorrelationLossLoss = (correlationLossLoss < 0) ? correlationLossLoss*1000-1 : 0;
if(isTransform){
posCorrelationGainGain = pow(posCorrelationGainGain/10,2)/10;
negCorrelationGainGain = pow(negCorrelationGainGain/10,2)/10;
posCorrelationLossLoss = pow(posCorrelationLossLoss/10,2)/10;
negCorrelationLossLoss = pow(negCorrelationLossLoss/10,2)/10;
}
corrAllStream<<selectedSiteIndex+1<<"\t"<<evolvingSite+1<<"\t"<<(int)posCorrelationGainGain<<"\t"<<(int)posCorrelationLossLoss<<"\t"<<(int)negCorrelationGainGain<<"\t"<<(int)negCorrelationLossLoss<<"\n";
}
}
}
else{
LOGnOUT(4,<<"print Correlations All sites ..."<<endl);
string corrAllSites = _outDir + "//" + "allCorrelations.isNormForBr."+int2string(isNormalizeForBranch)+pVal+ /*".isCorrForZ."+int2string(correlationForZscore)+*/ ".txt";
ofstream corrAllStream(corrAllSites.c_str());
corrAllStream.precision(precisionCorr);
corrAllStream<<"siteA"<<"\t"<<"siteB";
int vecIndex=0;
for (vector<bool>::iterator it=_isPearson.begin() ; it < _isPearson.end(); it++ ){
for (vector<string>::iterator evnt=_EventTypes.begin() ; evnt < _EventTypes.end(); evnt++ ){ // could be done with int
corrAllStream<<"\t"<<*evnt+int2string(*it);
vecIndex++;
}
}
corrAllStream<<"\n";
for (int selectedSiteIndex = 0; selectedSiteIndex <selectedPositions.size(); ++selectedSiteIndex){
int selectedSite = selectedPositions[selectedSiteIndex];
for (int posIndex = 0; posIndex<numOfpositions; ++posIndex){
int evolvingSite = evolvingSites[posIndex];
if(selectedSite == evolvingSite)
continue;
corrAllStream<<selectedSite+1<<"\t"<<evolvingSite+1;
int vecIndex=0;
for (vector<bool>::iterator it=_isPearson.begin() ; it < _isPearson.end(); it++ ){
for (vector<string>::iterator evnt=_EventTypes.begin() ; evnt < _EventTypes.end(); evnt++ ){ // could be done with int
corrAllStream<<"\t"<<correlationsVec2print[vecIndex][selectedSiteIndex][posIndex];
vecIndex++;
}
}
corrAllStream<<"\n";
}
}
}
}
/********************************************************************************************
*********************************************************************************************/
void computeCorrelations::fillCorrPerSelectedSites(Vdouble& correlationPerPos,VVdouble& expEventsPerPosPerBranch,VVdouble& expEventsPerPosPerBranch_B,const int selectedSite, const bool isPearson){
int numOfpositions = expEventsPerPosPerBranch_B.size();
//correlationPerPos.resize(numOfpositions);
for (int pos = 0; pos <numOfpositions; ++pos){
MDOUBLE correlation = 0;
if(isMinEQMaxInVector(expEventsPerPosPerBranch[selectedSite]) || isMinEQMaxInVector(expEventsPerPosPerBranch_B[pos]))
correlationPerPos[pos]=-99; // can't compute correlation
else{
if(isPearson)
correlation = calcPearsonCorrelation(expEventsPerPosPerBranch[selectedSite], expEventsPerPosPerBranch_B[pos]);
else{
//correlation = calcRankCorrelation(expEventsPerPosPerBranch[selectedSite], expEventsPerPosPerBranch_B[pos]); // seems to be problematic, diffrent results from R, Matlab
correlation = calcRankCorrelation2(expEventsPerPosPerBranch[selectedSite], expEventsPerPosPerBranch_B[pos]);
}
correlationPerPos[pos]=correlation;
}
}
}
/********************************************************************************************
fill expEventsPerPosPerBranch
*********************************************************************************************/
void computeCorrelations::fillMapValPerPosPerBranch(VVdouble& expEventsPerPosPerBranch,const string type, VVVVdouble& expChanges_PosNodeXY
,const bool isNormalizeForBranch, MDOUBLE* cutOff_p){
int numOfpositions = expChanges_PosNodeXY.size();
int numOfbranches = _tr.getNodesNum()-1; // was -1, minus the root node
int from = _EventTypesFromTo[type]["from"];
int to = _EventTypesFromTo[type]["to"];
expEventsPerPosPerBranch.resize(numOfpositions);
treeIterTopDownConst tIt(_tr);
for (int pos = 0; pos <numOfpositions; ++pos){
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next())
{
if(mynode->isRoot())
continue;
MDOUBLE val = 0;
MDOUBLE normalizationFactor = 1.0;
if(isNormalizeForBranch){
if(gainLossOptions::_isNormalizeByExpectationPerBranch){
if(_expChanges_NodeXY.size()==0)
sumExpectationPerBranch(expChanges_PosNodeXY, _expChanges_NodeXY); // filled once for both 0->1 and 1->0
normalizationFactor = _expChanges_NodeXY[mynode->id()][from][to]/numOfbranches; // mynode->dis2father()
}else
normalizationFactor = mynode->dis2father();
}
val = (expChanges_PosNodeXY[pos][mynode->id()][from][to] ) / normalizationFactor;
if(cutOff_p){
if(val>= *cutOff_p)
expEventsPerPosPerBranch[pos].push_back(1);
else
expEventsPerPosPerBranch[pos].push_back(0);
}
else
expEventsPerPosPerBranch[pos].push_back(val);
}
}
}
/********************************************************************************************
*********************************************************************************************/
void computeCorrelations::sumExpectationPerBranch(VVVVdouble& expChanges_PosNodeXY, VVVdouble& map_NodeXY){
int numOfPositions = expChanges_PosNodeXY.size();
int numOfBranches = expChanges_PosNodeXY[0].size();
int AlphSize = expChanges_PosNodeXY[0][0].size(); // =2
treeIterTopDownConst tIt(_tr);
resizeVVV(numOfBranches,AlphSize,AlphSize,map_NodeXY);
for (int pos = 0; pos <numOfPositions; ++pos){
//int i=0;
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()){
//for(int i=0;i<numOfBranches;++i){
for(int j=0;j<AlphSize;++j){
for(int k=0;k<AlphSize;++k){
map_NodeXY[mynode->id()][j][k] += expChanges_PosNodeXY[pos][mynode->id()][j][k];
}
}
//cout<<i<<" "<<mynode->id()<<endl; // DEBUG
//++i;
}
}
}
/********************************************************************************************
//Compute p-values of each statistic: P1
//, P2
//, P3
//, ??? , PN
// Sort these: P(1)
//? P(2)
//? P(3)
//? ??? ? P(N)
//{subscript
//()
//? sorted}
// For k =1..N, q(k)
//= minm ? k
//[ N?P(m)
///m]
//? Easily computed from sorted p-values by looping
//downwards from k= N to k =1
*********************************************************************************************/
VVVdouble computeCorrelations::pVals2qVals(VVVdouble& pValVec, map<int, map<int, map<string, map<string, MDOUBLE > > > >& correlationsData
, vector<vector<bool> >& isComputePairWithRateAboveNim, Vdouble& T_BH, Vint& selectedSites, Vint& evolvingSites)
{
LOGnOUT(4,<<endl<<"pVals2qVals..."<<endl);
time_t t1,t2;
time(&t1);
VVVdouble qValsVec;
if(gainLossOptions::_isComputeQVals)
qValsVec = pValVec; // instead of re-size, not required if not computed
int numberOfcorrelationVec = pValVec.size();
int numOfSites_A = pValVec[0].size();
int numOfSites_B = pValVec[0][0].size();
typedef map<int,map<int, map<string, map<string, MDOUBLE> > > >::iterator it_A;
typedef map<int, map<string, map<string, MDOUBLE> > >::iterator it_B;
it_A it_siteA = correlationsData.begin();
it_B it_siteB = it_siteA->second.begin();
for (int corIndex = 0; corIndex <numberOfcorrelationVec; ++corIndex){
LOGnOUT(4,<<" *** corIndex="<<corIndex<<endl);
Vdouble pVals;
Vdouble qVals;
// get pVals
LOGnOUT(6,<<"get pVals..."<<endl);
for (int site_A = 0; site_A <numOfSites_A; ++site_A){
int site_A_original = selectedSites[site_A];
for (int site_B = site_A; site_B <numOfSites_B; ++site_B){
int site_B_original = evolvingSites[site_B];
if(site_A_original == site_B_original){
continue;
}
MDOUBLE pVal = 1;
if(isComputePairWithRateAboveNim[site_A][site_B]){
if(gainLossOptions::_selectedSitesForCorrelation!="" ){
// consider only pairs with min Rate
//if(correlationsData[site_A_original][site_B][int2string(corIndex)]["Rate"]>Parameters::getFloat("_minExpThresholdForPValComputationForCorrelatingPair") ){ //TEMP
pVal = correlationsData[site_A_original][site_B_original][int2string(corIndex)]["pVal"]; //
//if(pValVec[corIndex][site_A][site_B] != pVal)
// cout<<"ERRRRRRR diff pval\n";
//if(correlationsData[site_A_original][site_B][int2string(corIndex)]["Rate"]>Parameters::getFloat("_minExpThresholdForPValComputationForCorrelatingPair") && pVal > 1.99)
// cout<<"ERRRRRRR diff pval\n";
}
else
pVal = pValVec[corIndex][site_A][site_B]; // Real correlation from Input variable
pVals.push_back(pVal);
}
//if(!(pVal > 1)) // pair is with Nmin below T, and ignored, since it's removed from both simulations and real data no need to correct for this hypothesis
// pVals.push_back(pVal);
}
}
// sort pVal
vector< vecElem<MDOUBLE> > orderVecPVal;
orderVec(pVals, orderVecPVal);
qVals.resize(pVals.size(),1);
sort(pVals.begin(),pVals.end()); // faster than using the "getValue"
pair<vector<double>::iterator,vector<double>::iterator> bounds;
float pVals2checkBeforeFDR [] = {gainLossOptions::_pValueCutOffForBootStrap, 0.05, 0.01, 0.005, 0.001, 0.0001};
int lastIndexWithPVal2check;
for (int i=0; i<6; ++i){
bounds = equal_range (pVals.begin(), pVals.end(), pVals2checkBeforeFDR[i]);
if(i==0)
lastIndexWithPVal2check = int(bounds.second - pVals.begin());
int lastIndexWithPValBiggerThanThreshold = int(bounds.second - pVals.begin());
LOGnOUT(4,<<"Before FDR correction there are "<<lastIndexWithPValBiggerThanThreshold<<" pairs with significant pVal="<< pVals2checkBeforeFDR[i]<<endl);
}
LOGnOUT(4,<<"Compute BH threshold for number of multiple tests="<<pVals.size()<< " ..."<<endl);
T_BH[corIndex] = 0;
T_BH[corIndex] = computeFDRthreshold(pVals, gainLossOptions::_pValueCutOffForBootStrap, true);
//for (int i=0; i<pVals.size(); ++i){
// MDOUBLE correctedVal = (double)(i+1)/(double)indexAll *pValcutOff;
// if( pVals[i] <= correctedVal){
// T_BH[corIndex] = pVals[i];
// }
//}
bounds = equal_range (pVals.begin(), pVals.end(),T_BH[corIndex]);
if(T_BH[corIndex] > 0.0){
LOGnOUT(4,<<"For FDR level of "<<gainLossOptions::_pValueCutOffForBootStrap<<" BH threshold="<<T_BH[corIndex]<<" with "<<int(bounds.first - pVals.begin())<<" "<<int(bounds.second - pVals.begin())<<" significant values"<<endl);}
else{
LOGnOUT(4,<<"For FDR level of "<<gainLossOptions::_pValueCutOffForBootStrap<<" BH threshold="<<T_BH[corIndex]<<" with no significant values"<<endl<<endl);}
// additional BH thresholds
float additionalFDRlevels [] = {0.1, 0.05, 0.01, 0.001};
for (int i=0; i< 4 ; ++i){ // must be length of additionalFDRlevels
if(gainLossOptions::_pValueCutOffForBootStrap == additionalFDRlevels[i])
continue;
MDOUBLE BH = computeFDRthreshold(pVals,additionalFDRlevels[i], true);
LOGnOUT(4,<<"For FDR level of "<<additionalFDRlevels[i]<<" BH threshold is "<<BH<<endl);
}
// compute q-vals
VVVdouble qValsVec;
if(gainLossOptions::_isComputeQVals){
// produce qVals by FDR, assume the pVal vector is sorted P_1<=P_2<=...<=P_N
LOGnOUT(4,<<"Compute FDR correction - get qVals..."<<endl);
for (int k=1; k<=lastIndexWithPVal2check; ++k){
if(k%1000==0)
cout<<"*";
int m = k;
MDOUBLE pVal = pVals[k-1];
MDOUBLE qVal = pVal;
//cout<<"pVal "<<k<<" "<<orderVecPVal[m-1].getValue()<<endl; //DEB
//MDOUBLE qVal = (double)indexAll*pVal/(double)m; // only init
if(pVal < gainLossOptions::_pValueCutOffForBootStrap && qVal < gainLossOptions::_pValueCutOffForBootStrap){ // since pVals are sorted, if last qVal computation yielded >0.05, no need to compute
qVal = 1; // init, not corrected
for (m=k; m<= lastIndexWithPVal2check; ++m){
MDOUBLE pValtemp = pVals[m-1];
MDOUBLE qValtemp = (double)pVals.size()*pValtemp/(double)m;
if(qValtemp < qVal)
qVal = qValtemp;
}
}else{
break;
}
//cout<<"pVal="<<pVal<<" and qVal="<<qVal<<"\n"; //DEB
qVals[orderVecPVal[k-1].getPlace()] = qVal; // fill values, related to original order of pVals
}
cout<<"\n";
// assign qVals
LOGnOUT(4,<<"Assign qVals..."<<endl);
int ind = 0;
for (int site_A = 0; site_A <numOfSites_A; ++site_A){
for (int site_B = site_A; site_B <numOfSites_B; ++site_B){
if(site_A == site_B){
continue;
}
MDOUBLE qVal = qVals[ind]; // this works only if qVals order is the same as the original pVal
qValsVec[corIndex][site_A][site_B] = qVal;
qValsVec[corIndex][site_B][site_A] = qVal;
//map<string, Vdouble>::iterator iterTerm = _totalTerminals.find(nodeName);
it_A iterA = correlationsData.find(site_A);
it_B iterB = correlationsData[site_A].find(site_B);
if (!(iterA==correlationsData.end()) && !(iterB==correlationsData[site_A].end())){
//cout<<site_A<<" "<<site_B<<"\n";
correlationsData[site_A][site_B][int2string(corIndex)]["qVal"] = qVal;
}
ind++;
}
}
}
}
time(&t2);
LOGnOUT(4,<<"TIME = "<<(t2-t1)/60.0<<" minutes"<<endl<<endl);
return qValsVec;
}
|