1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
|
/*
Copyright (C) 2011 Tal Pupko TalP@tauex.tau.ac.il.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "computeCountsGL.h"
#include "gainLossUtils.h"
#include "gainLossAlphabet.h"
#include "computePosteriorExpectationOfChange.h"
#include "computeJumps.h"
/********************************************************************************************
computeCountsGL
*********************************************************************************************/
computeCountsGL::computeCountsGL(sequenceContainer& sc, tree& tr, stochasticProcess* sp, string& outDir, VVdouble& logLpostPerCatPerPos, MDOUBLE distanceFromNearestOTUForRecent, bool isSilent):
_tr(tr),_sp(sp),_sc(sc),_outDir(outDir),_postProbPerCatPerPos(logLpostPerCatPerPos),_distanceFromNearestOTUForRecent(distanceFromNearestOTUForRecent), _isSilent(isSilent)
{
_alphabetSize = _sp->alphabetSize();
}
computeCountsGL::computeCountsGL(sequenceContainer& sc, tree& tr, vector<vector<stochasticProcess*> >& spVVec, distribution* gainDist, distribution* lossDist, string& outDir, VVVdouble& logLpostPerSpPerCatPerPos, MDOUBLE distanceFromNearestOTUForRecent, bool isSilent):
_tr(tr),_spVVec(spVVec), _gainDist(gainDist), _lossDist(lossDist),_sc(sc),_outDir(outDir),_postProbPerSpPerCatPerPos(logLpostPerSpPerCatPerPos),_distanceFromNearestOTUForRecent(distanceFromNearestOTUForRecent), _isSilent(isSilent)
{
_alphabetSize = _spVVec[0][0]->alphabetSize();
}
computeCountsGL::~computeCountsGL(){
//clearVVVV(_jointProb_PosNodeXY);
}
computeCountsGL& computeCountsGL::operator=(const computeCountsGL &other){
if (this != &other) { // Check for self-assignment
}
return *this;
}
/********************************************************************************************
*********************************************************************************************/
void computeCountsGL::run()
{
LOGnOUT(4, <<endl<<"Computation stochastic mapping"<<endl);
time_t t1,t2;
time(&t1);
_expV01.resize(_sc.seqLen());
_expV10.resize(_sc.seqLen());
_probV01.resize(_sc.seqLen());
_probV10.resize(_sc.seqLen());
resizeVVV(_sc.seqLen(),_alphabetSize,_alphabetSize,_expV);
resizeVVV(_sc.seqLen(),_alphabetSize,_alphabetSize,_probV);
resizeVVVV(_sc.seqLen(),_tr.getNodesNum(),_alphabetSize,_alphabetSize,_jointProb_PosNodeXY);
resizeVVVV(_sc.seqLen(),_tr.getNodesNum(),_alphabetSize,_alphabetSize,_probChanges_PosNodeXY);
resizeVVVV(_sc.seqLen(),_tr.getNodesNum(),_alphabetSize,_alphabetSize,_expChanges_PosNodeXY);
if(!gainLossOptions::_gainLossDist){
computePosteriorOfChangeGivenTerminalsPerCat();
}
else
computePosteriorOfChangeGivenTerminalsPerSpPerCat(); // GLM - multiple SPs
time(&t2);
LOGnOUT(4,<<"TIME = "<<(t2-t1)/60.0<<" minutes"<<endl<<endl);
}
/********************************************************************************************
*********************************************************************************************/
void computeCountsGL::computePosteriorOfChangeGivenTerminalsPerCat()
{
// Per RateCategory -- All the computations is done while looping over rate categories
for (int rateIndex=0 ; rateIndex< _sp->categories(); ++rateIndex)
{
tree copy_et = _tr;
MDOUBLE rateVal = _sp->rates(rateIndex);
MDOUBLE minimumRate = 0.000000001; //0.0000001
MDOUBLE rate2multiply = max(rateVal,minimumRate);
if(rateVal<minimumRate){
LOGnOUT(4, <<" >>> NOTE: the rate category "<<rateVal<<" is too low for computePosteriorExpectationOfChangePerSite"<<endl); }
copy_et.multipleAllBranchesByFactor(rate2multiply);
if(!_isSilent)
LOGnOUT(4, <<"Computation performed analytically for rate "<<rate2multiply<<endl);
//gainLossAlphabet alph; // needed for Alphabet size
//int alphSize = ;
simulateJumps simPerRateCategory(copy_et,*_sp,_alphabetSize);
// Per POS
for (int pos = 0; pos <_sc.seqLen(); ++pos)
{
LOG(9,<<"pos "<<pos+1<<endl);
// I) computeJoint "computePosteriorOfChangeGivenTerminals" (posteriorPerNodePer2States[mynode->id()][fatherState][sonState])
VVVdouble posteriorsGivenTerminalsPerRateCategoryPerPos;
computePosteriorExpectationOfChange cpecPerRateCategoryPerPos(copy_et,_sc,_sp); // Per POS,CAT
cpecPerRateCategoryPerPos.computePosteriorOfChangeGivenTerminals(posteriorsGivenTerminalsPerRateCategoryPerPos,pos);
// Exp vars - allocate
VVVdouble expChangesForBranchPerRateCategoryPerPos; // Sim+Exp
resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),expChangesForBranchPerRateCategoryPerPos);
VVdouble expVV; // Per POS
// Prob vars - allocate
VVVdouble probChangesForBranchPerRateCategoryPerPos; // Sim+Prob
resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),probChangesForBranchPerRateCategoryPerPos);
VVdouble probVV;
////////////////////////////////////////////////////////////////////////// Analytical
if(gainLossOptions::_isAnaliticComputeJumps){
MDOUBLE Lambda1 = static_cast<gainLossModel*>(_sp->getPijAccelerator()->getReplacementModel())->getMu1();
MDOUBLE Lambda2 = static_cast<gainLossModel*>(_sp->getPijAccelerator()->getReplacementModel())->getMu2();
if(Lambda1 == Lambda2)
Lambda2 += 0.000000000000001; //NOTE: this is required for analyticComputeSimulateion, to avoid Lambda1=Lambda2
computeJumps computeJumpsObj(Lambda1,Lambda2);
// II) PostExp: take in account both: 1) Analytical equations 2) posteriorsGivenTerminal
VVVdouble expChangesForBranchPerRateCategoryPerPosAnal;
resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),expChangesForBranchPerRateCategoryPerPosAnal);
VVdouble expVVAnal = cpecPerRateCategoryPerPos.computeExpectationAcrossTree(computeJumpsObj,posteriorsGivenTerminalsPerRateCategoryPerPos,expChangesForBranchPerRateCategoryPerPosAnal);
expVV = expVVAnal;
expChangesForBranchPerRateCategoryPerPos = expChangesForBranchPerRateCategoryPerPosAnal;
// III) PostProbChange: take in account both: 1) Analytical equations 2) posteriorsGivenTerminal
VVVdouble probChangesForBranchPerRateCategoryPerPosAnal;
resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),probChangesForBranchPerRateCategoryPerPosAnal);
VVdouble probVVAnal = cpecPerRateCategoryPerPos.computePosteriorAcrossTree(computeJumpsObj,posteriorsGivenTerminalsPerRateCategoryPerPos,probChangesForBranchPerRateCategoryPerPosAnal);
probVV = probVVAnal;
probChangesForBranchPerRateCategoryPerPos = probChangesForBranchPerRateCategoryPerPosAnal;
}
else{
if(!_isSilent)
LOGnOUT(4, <<"running "<<gainLossOptions::_numOfSimulationsForPotExp<<" simulations for rate "<<rate2multiply<<endl);
simPerRateCategory.runSimulation(gainLossOptions::_numOfSimulationsForPotExp);
if(!_isSilent )
LOGnOUT(4,<<"finished simulations"<<endl);
// II) PostExp: take in account both: 1) simulations 2) posteriorsGivenTerminal
expVV = cpecPerRateCategoryPerPos.computeExpectationAcrossTree(simPerRateCategory,posteriorsGivenTerminalsPerRateCategoryPerPos,
expChangesForBranchPerRateCategoryPerPos);
// III) PostProbChange: take in account both: 1) simulations 2) posteriorsGivenTerminal
probVV = cpecPerRateCategoryPerPos.computePosteriorAcrossTree(simPerRateCategory,posteriorsGivenTerminalsPerRateCategoryPerPos,
probChangesForBranchPerRateCategoryPerPos);
}
//////////////////////////////////////////////////////////////////////////
MDOUBLE exp01 = expVV[0][1];
MDOUBLE exp10 = expVV[1][0];
_expV01[pos]+=exp01*_postProbPerCatPerPos[rateIndex][pos];
_expV10[pos]+=exp10*_postProbPerCatPerPos[rateIndex][pos];
_expV[pos][0][1]+=exp01*_postProbPerCatPerPos[rateIndex][pos];
_expV[pos][1][0]+=exp10*_postProbPerCatPerPos[rateIndex][pos];
MDOUBLE prob01 = probVV[0][1];
MDOUBLE prob10 = probVV[1][0];
_probV01[pos]+=prob01*_postProbPerCatPerPos[rateIndex][pos];
_probV10[pos]+=prob10*_postProbPerCatPerPos[rateIndex][pos];
_probV[pos][0][1]+=prob01*_postProbPerCatPerPos[rateIndex][pos];
_probV[pos][1][0]+=prob10*_postProbPerCatPerPos[rateIndex][pos];
// Store all information PerCat,PerPOS
for(int i=0;i<_probChanges_PosNodeXY[pos].size();++i){ // nodeId
for(int j=0;j<_probChanges_PosNodeXY[pos][i].size();++j){ // fatherState
for(int k=0;k<_probChanges_PosNodeXY[pos][i][j].size();++k){ // sonState
_probChanges_PosNodeXY[pos][i][j][k] += probChangesForBranchPerRateCategoryPerPos[i][j][k]*_postProbPerCatPerPos[rateIndex][pos];
_expChanges_PosNodeXY[pos][i][j][k] += expChangesForBranchPerRateCategoryPerPos[i][j][k]*_postProbPerCatPerPos[rateIndex][pos];
_jointProb_PosNodeXY[pos][i][j][k] += posteriorsGivenTerminalsPerRateCategoryPerPos[i][j][k]*_postProbPerCatPerPos[rateIndex][pos];
}
}
}
}
}
}
/********************************************************************************************
spVV
*********************************************************************************************/
void computeCountsGL::computePosteriorOfChangeGivenTerminalsPerSpPerCat()
{
int numOfSPs = _gainDist->categories()*_lossDist->categories();
// per Sp
for (int spIndex=0; spIndex < numOfSPs; ++spIndex) {
int gainIndex =fromIndex2gainIndex(spIndex,_gainDist->categories(),_lossDist->categories());
int lossIndex =fromIndex2lossIndex(spIndex,_gainDist->categories(),_lossDist->categories());
_sp = _spVVec[gainIndex][lossIndex];
if(!_isSilent){
LOGnOUT(4,<<"computePosteriorOfChangeGivenTerminalsPerSpPerCat with sp:\n Gain= "<<static_cast<gainLossModel*>((*_sp).getPijAccelerator()->getReplacementModel())->getMu1() <<endl);
if(!gainLossOptions::_isReversible)LOGnOUT(4,<<" Loss= "<<static_cast<gainLossModelNonReversible*>((*_sp).getPijAccelerator()->getReplacementModel())->getMu2() <<endl);
}
// Per RateCategory -- All the computations is done while looping over rate categories
int numOfRateCategories = _spVVec[gainIndex][lossIndex]->categories(); // same for all SPs
for (int rateIndex=0 ; rateIndex< numOfRateCategories; ++rateIndex)
{
tree copy_et = _tr;
MDOUBLE rateVal = _sp->rates(rateIndex);
MDOUBLE minimumRate = 0.000000001; //0.0000001
MDOUBLE rate2multiply = max(rateVal,minimumRate);
if(rateVal<minimumRate){
LOGnOUT(4, <<" >>> NOTE: the rate category "<<rateVal<<" is too low for computePosteriorExpectationOfChangePerSite"<<endl); }
copy_et.multipleAllBranchesByFactor(rate2multiply);
//if(!_isSilent)
// LOGnOUT(4, <<"running "<<gainLossOptions::_numOfSimulationsForPotExp<<" simulations for rate "<<rate2multiply<<endl);
////gainLossAlphabet alph; // needed for Alphabet size
//simulateJumps simPerRateCategory(copy_et,*_sp,_alphabetSize);
//simPerRateCategory.runSimulation(gainLossOptions::_numOfSimulationsForPotExp);
//if(!_isSilent)
// LOGnOUT(4,<<"finished simulations"<<endl);
simulateJumps simPerRateCategory(copy_et,*_sp,_alphabetSize);
// Per POS
for (int pos = 0; pos <_sc.seqLen(); ++pos)
{
LOG(7,<<"pos "<<pos+1<<endl);
// I) computeJoint "computePosteriorOfChangeGivenTerminals" (posteriorPerNodePer2States[mynode->id()][fatherState][sonState])
VVVdouble posteriorsGivenTerminalsPerRateCategoryPerPos;
computePosteriorExpectationOfChange cpecPerRateCategoryPerPos(copy_et,_sc,_sp); // Per POS,CAT
cpecPerRateCategoryPerPos.computePosteriorOfChangeGivenTerminals(posteriorsGivenTerminalsPerRateCategoryPerPos,pos);
// Exp vars - allocate
VVVdouble expChangesForBranchPerRateCategoryPerPos; // Sim+Exp
resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),expChangesForBranchPerRateCategoryPerPos);
VVdouble expVV; // Per POS
// Prob vars - allocate
VVVdouble probChangesForBranchPerRateCategoryPerPos; // Sim+Prob
resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),probChangesForBranchPerRateCategoryPerPos);
VVdouble probVV;
////////////////////////////////////////////////////////////////////////// Analytical
if(gainLossOptions::_isAnaliticComputeJumps){
MDOUBLE Lambda1 = static_cast<gainLossModel*>(_sp->getPijAccelerator()->getReplacementModel())->getMu1();
MDOUBLE Lambda2 = static_cast<gainLossModel*>(_sp->getPijAccelerator()->getReplacementModel())->getMu2();
computeJumps computeJumpsObj(Lambda1,Lambda2);
// II) PostExp: take in account both: 1) Analytical equations 2) posteriorsGivenTerminal
VVVdouble expChangesForBranchPerRateCategoryPerPosAnal;
resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),expChangesForBranchPerRateCategoryPerPosAnal);
VVdouble expVVAnal = cpecPerRateCategoryPerPos.computeExpectationAcrossTree(computeJumpsObj,posteriorsGivenTerminalsPerRateCategoryPerPos,expChangesForBranchPerRateCategoryPerPosAnal);
expVV = expVVAnal;
expChangesForBranchPerRateCategoryPerPos = expChangesForBranchPerRateCategoryPerPosAnal;
// III) PostProbChange: take in account both: 1) Analytical equations 2) posteriorsGivenTerminal
VVVdouble probChangesForBranchPerRateCategoryPerPosAnal;
resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),probChangesForBranchPerRateCategoryPerPosAnal);
VVdouble probVVAnal = cpecPerRateCategoryPerPos.computePosteriorAcrossTree(computeJumpsObj,posteriorsGivenTerminalsPerRateCategoryPerPos,probChangesForBranchPerRateCategoryPerPosAnal);
probVV = probVVAnal;
probChangesForBranchPerRateCategoryPerPos = probChangesForBranchPerRateCategoryPerPosAnal;
}
else{
if(!_isSilent)
LOGnOUT(4, <<"running "<<gainLossOptions::_numOfSimulationsForPotExp<<" simulations for rate "<<rate2multiply<<endl);
simPerRateCategory.runSimulation(gainLossOptions::_numOfSimulationsForPotExp);
if(!_isSilent )
LOGnOUT(4,<<"finished simulations"<<endl);
// II) PostExp: take in account both: 1) simulations 2) posteriorsGivenTerminal
expVV = cpecPerRateCategoryPerPos.computeExpectationAcrossTree(simPerRateCategory,posteriorsGivenTerminalsPerRateCategoryPerPos,
expChangesForBranchPerRateCategoryPerPos);
// III) PostProbChange: take in account both: 1) simulations 2) posteriorsGivenTerminal
probVV = cpecPerRateCategoryPerPos.computePosteriorAcrossTree(simPerRateCategory,posteriorsGivenTerminalsPerRateCategoryPerPos,
probChangesForBranchPerRateCategoryPerPos);
}
//////////////////////////////////////////////////////////////////////////
//// II) Exp - take in account both: 1) simulations 2) posteriorsGivenTerminal
//VVVdouble expChangesForBranchPerRateCategoryPerPos; // Sim+Exp
//resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),expChangesForBranchPerRateCategoryPerPos);
//VVdouble expVV = cpecPerRateCategoryPerPos.computeExpectationAcrossTree(simPerRateCategory,posteriorsGivenTerminalsPerRateCategoryPerPos,
// expChangesForBranchPerRateCategoryPerPos); // Per POS
MDOUBLE exp01 = expVV[0][1];
MDOUBLE exp10 = expVV[1][0];
_expV01[pos]+=exp01*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
_expV10[pos]+=exp10*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
_expV[pos][0][1]+=exp01*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
_expV[pos][1][0]+=exp10*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
//// III) Sim - take in account both: 1) simulations 2) posteriorsGivenTerminal
//VVVdouble probChangesForBranchPerRateCategoryPerPos; // Sim+Prob
//resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),probChangesForBranchPerRateCategoryPerPos);
//VVdouble probVV = cpecPerRateCategoryPerPos.computePosteriorAcrossTree(simPerRateCategory,posteriorsGivenTerminalsPerRateCategoryPerPos,probChangesForBranchPerRateCategoryPerPos);
MDOUBLE prob01 = probVV[0][1];
MDOUBLE prob10 = probVV[1][0];
_probV01[pos]+=prob01*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
_probV10[pos]+=prob10*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
_probV[pos][0][1]+=prob01*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
_probV[pos][1][0]+=prob10*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
// Store all information PerCat,PerPOS
for(int i=0;i<_probChanges_PosNodeXY[pos].size();++i){ // nodeId
for(int j=0;j<_probChanges_PosNodeXY[pos][i].size();++j){ // fatherState
for(int k=0;k<_probChanges_PosNodeXY[pos][i][j].size();++k){ // sonState
_jointProb_PosNodeXY[pos][i][j][k] += posteriorsGivenTerminalsPerRateCategoryPerPos[i][j][k]*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
_probChanges_PosNodeXY[pos][i][j][k] += probChangesForBranchPerRateCategoryPerPos[i][j][k]*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
_expChanges_PosNodeXY[pos][i][j][k] += expChangesForBranchPerRateCategoryPerPos[i][j][k]*_postProbPerSpPerCatPerPos[spIndex][rateIndex][pos];
}
}
}
}
// Per POS
}
// per rateCat
}
// Per Sp
}
/********************************************************************************************
printProbExp()
print perPos (over all branches)
use the members _expV01, _expV10 for basic
*********************************************************************************************/
void computeCountsGL::printProbExp()
{
string posteriorExpectationOfChangeString = _outDir + "//" + "PosteriorExpectationOfChange.txt";
ofstream posteriorExpectationStream(posteriorExpectationOfChangeString.c_str());
posteriorExpectationStream.precision(PRECISION);
string posteriorProbabilityOfChangeString = _outDir + "//" + "PosteriorProbabilityOfChange.txt";
ofstream posteriorProbabilityStream(posteriorProbabilityOfChangeString.c_str());
posteriorProbabilityStream.precision(PRECISION);
posteriorExpectationStream<<"POS"<<"\t"<<"exp01"<<"\t"<<"exp10"<<endl;
posteriorProbabilityStream<<"POS"<<"\t"<<"prob01"<<"\t"<<"prob10"<<endl;
for (int pos = 0; pos <_sc.seqLen(); ++pos){
posteriorExpectationStream<<pos+1<<"\t"<<_expV01[pos]<<"\t"<<_expV10[pos]<<endl;
posteriorProbabilityStream<<pos+1<<"\t"<<_probV01[pos]<<"\t"<<_probV10[pos]<<endl;
}
}
/********************************************************************************************
printProbabilityPerPosPerBranch 1
produce 2 print files:
1. print detailed file (out)
2. print summary over all branches (outSum)
*********************************************************************************************/
void computeCountsGL::printProbabilityPerPosPerBranch()
{
string gainLossProbabilityPerPosPerBranch = gainLossOptions::_outDir + "//" + "ProbabilityPerPosPerBranch.txt";
ofstream gainLossProbabilityPerPosPerBranchStream(gainLossProbabilityPerPosPerBranch.c_str());
gainLossProbabilityPerPosPerBranchStream.precision(PRECISION);
gainLossProbabilityPerPosPerBranchStream<<"# print values over probCutOff "<<gainLossOptions::_probCutOffPrintEvent<<endl;
gainLossProbabilityPerPosPerBranchStream<<"G/L"<<"\t"<<"POS"<<"\t"<<"branch"<<"\t"<<"branchLength"<<"\t"<<"distance2root"<<"\t"<<"distance2NearestOTU"<<"\t"<<"numOfNodes2NearestOTU"<<"\t"<<"probability"<<endl;
string gainLossCountProbPerPos = _outDir + "//" + "ProbabilityPerPos.txt";
ofstream gainLossCountProbPerPosStream(gainLossCountProbPerPos.c_str());
gainLossCountProbPerPosStream.precision(PRECISION);
//gainLossCountProbPerPosStream<<"# print values over probCutOff "<<gainLossOptions::_probCutOffSum<<endl;
gainLossCountProbPerPosStream<<"POS"<<"\t"<<"prob01"<<"\t"<<"prob10"<<endl;
for (int pos = 0; pos <_sc.seqLen(); ++pos){
printGainLossProbabilityPerPosPerBranch(pos, gainLossOptions::_probCutOffPrintEvent, _probChanges_PosNodeXY[pos],gainLossProbabilityPerPosPerBranchStream,gainLossCountProbPerPosStream);
}
}
/********************************************************************************************
printGainLossProbabilityPerPosPerBranch 1.1
*********************************************************************************************/
void computeCountsGL::printGainLossProbabilityPerPosPerBranch(int pos, MDOUBLE probCutOff, VVVdouble& probChanges, ostream& out, ostream& outCount)
{
MDOUBLE count01 =0;
MDOUBLE count10 =0;
treeIterTopDownConst tIt(_tr);
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if (probChanges[mynode->id()][0][1] >= probCutOff){
out<<"gain"<<"\t"<<pos+1<<"\t"<<mynode->name()<<"\t"<<mynode->dis2father()<<"\t"<<mynode->getDistance2ROOT()<<"\t"<<mynode->getMinimalDistance2OTU()<<"\t"<<mynode->getMinimalNumOfNodes2OTU()<<"\t"<<probChanges[mynode->id()][0][1]<<endl;
}
count01+= probChanges[mynode->id()][0][1];
if (probChanges[mynode->id()][1][0] >= probCutOff){
out<<"loss"<<"\t"<<pos+1<<"\t"<<mynode->name()<<"\t"<<mynode->dis2father()<<"\t"<<mynode->getDistance2ROOT()<<"\t"<<mynode->getMinimalDistance2OTU()<<"\t"<<mynode->getMinimalNumOfNodes2OTU()<<"\t"<<probChanges[mynode->id()][1][0]<<endl;
}
count10+= probChanges[mynode->id()][1][0];
}
outCount<<pos+1<<"\t"<<count01<<"\t"<<count10<<endl;
}
/********************************************************************************************
*********************************************************************************************/
void computeCountsGL::produceExpectationPerBranch(){
resizeVVV(_tr.getNodesNum(),_sp->alphabetSize(),_sp->alphabetSize(),_expChanges_NodeXY);
for (int pos = 0; pos <_sc.seqLen(); ++pos){
for(int i=0;i<_expChanges_PosNodeXY[pos].size();++i){
for(int j=0;j<_expChanges_PosNodeXY[pos][i].size();++j){
for(int k=0;k<_expChanges_PosNodeXY[pos][i][j].size();++k){
_expChanges_NodeXY[i][j][k] += _expChanges_PosNodeXY[pos][i][j][k];
}
}
}
}
}
/********************************************************************************************
*********************************************************************************************/
void computeCountsGL::printExpectationPerBranch()
{
string gainLossExpectationPerBranch = _outDir + "//" + "ExpectationPerBranch.txt";
ofstream gainLossExpectationPerBranchStream(gainLossExpectationPerBranch.c_str());
gainLossExpectationPerBranchStream.precision(PRECISION);
printGainLossExpectationPerBranch(_expChanges_NodeXY,gainLossExpectationPerBranchStream);
}
/********************************************************************************************
*********************************************************************************************/
void computeCountsGL::printGainLossExpectationPerBranch(VVVdouble& expectChanges, ostream& out)
{
treeIterTopDownConst tIt(_tr);
out<<"# Gain and Loss"<<"\n";
out<<"branch"<<"\t"<<"branchLength"<<"\t"<<"distance2root"<<"\t"<<"distance2NearestOTU"<<"\t"<<"numOfNodes2NearestOTU"<<"\t"<<"exp01"<<"\t"<<"exp10"<<endl;
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if(mynode->isRoot())
continue;
out<<mynode->name()<<"\t"<<mynode->dis2father()<<"\t"<<mynode->getDistance2ROOT()<<"\t"<<mynode->getMinimalDistance2OTU()<<"\t"<<mynode->getMinimalNumOfNodes2OTU()<<"\t"<<expectChanges[mynode->id()][0][1]<<"\t"<<expectChanges[mynode->id()][1][0]<<endl;
}
}
/********************************************************************************************
*********************************************************************************************/
void computeCountsGL::updateTreeByGainLossExpectationPerBranch(tree& tr, int from, int to)
{
tr = _tr;
treeIterTopDownConst tIt(tr);
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if(mynode->isRoot())
continue;
mynode->setDisToFather(_expChanges_NodeXY[mynode->id()][from][to]);
}
}
/********************************************************************************************
*********************************************************************************************/
void computeCountsGL::printTreesWithExpectationValuesAsBP()
{
// ExpectationPerPosPerBranch - Print Trees
Vstring Vnames;
fillVnames(Vnames,_tr);
createDir(gainLossOptions::_outDir, "TreesWithExpectationValuesAsBP");
for (int pos = 0; pos <_sc.seqLen(); ++pos){
string strTreeNum = _outDir + "//" + "TreesWithExpectationValuesAsBP" + "//" + "expTree" + int2string(pos+1) + ".ph";
ofstream tree_out(strTreeNum.c_str());
tree_out.precision(PRECISION);
printTreeWithValuesAsBP(tree_out,_tr,Vnames,&_expChanges_PosNodeXY[pos]);
}
}
/********************************************************************************************
*********************************************************************************************/
void computeCountsGL::printTreesWithProbabilityValuesAsBP()
{
// ProbabilityPerPosPerBranch - Print Trees
Vstring Vnames;
fillVnames(Vnames,_tr);
createDir(_outDir, "TreesWithProbabilityValuesAsBP");
for (int pos = 0; pos <_sc.seqLen(); ++pos){
string strTreeNum = _outDir + "//" + "TreesWithProbabilityValuesAsBP"+ "//" + "probTree" + int2string(pos+1) + ".ph";
ofstream tree_out(strTreeNum.c_str());
printTreeWithValuesAsBP(tree_out,_tr,Vnames,&_probChanges_PosNodeXY[pos]);
}
}
/********************************************************************************************
printProbExpPerPosPerBranch 1
produce 2 print files:
1. print detailed file (out)
2. print summary over all branches (outSum)
*********************************************************************************************/
void computeCountsGL::printProbExpPerPosPerBranch(MDOUBLE probCutOff, MDOUBLE countsCutOff)
{
string gainLossProbExpPerPosPerBranch = _outDir + "//" + "gainLossProbExpPerPosPerBranch.txt";
ofstream gainLossProbExpPerPosPerBranchStream(gainLossProbExpPerPosPerBranch.c_str());
gainLossProbExpPerPosPerBranchStream.precision(PRECISION);
gainLossProbExpPerPosPerBranchStream<<"# print values over probCutOff "<<probCutOff<<endl;
gainLossProbExpPerPosPerBranchStream<<"G/L"<<"\t"<<"POS"<<"\t"<<"branch"<<"\t"<<"branchLength"<<"\t"<<"distance2root"<<"\t"<<"distance2NearestOTU"<<"\t"<<"numOfNodes2NearestOTU"<<"\t"<<"probability"<<"\t"<<"expectation"<<endl;
string gainLossProbExpPerPos = _outDir + "//" + "gainLossProbExpCountPerPos.txt";
ofstream gainLossCountProbPerPosStream(gainLossProbExpPerPos.c_str());
gainLossCountProbPerPosStream.precision(PRECISION);
gainLossCountProbPerPosStream<<"# print count over countsCutOff "<<countsCutOff<<endl;
gainLossCountProbPerPosStream<<"POS"<<"\t"<<"prob01"<<"\t"<<"prob10"<<"\t"<<"exp01"<<"\t"<<"exp10"<<"\t"<<"count01"<<"\t"<<"count10"<<endl;
for (int pos = 0; pos <_sc.seqLen(); ++pos){
printGainLossProbExpPerPosPerBranch(pos, probCutOff,countsCutOff, _probChanges_PosNodeXY[pos],_expChanges_PosNodeXY[pos],gainLossProbExpPerPosPerBranchStream,gainLossCountProbPerPosStream);
}
}
/********************************************************************************************
PrintExpPerPosPerBranchMatrix (CoMap input)
NOTE!!! this version only consist of gain or loss values
Alternatively, (1) abs(gain+loss) (2) gain-loss (3) separate gain and loss matrices
*********************************************************************************************/
void computeCountsGL::printExpPerPosPerBranchMatrix(const int from, const int to)
{
int numOfpositions = _sc.seqLen();
int numOfbranches = _tr.getNodesNum()-1; // minus the root node
string expPerPosPerBranchMatrix = _outDir + "//" + "expPerPosPerBranchMatrix."+ int2string(from)+int2string(to)+".txt";
ofstream expPerPosPerBranchMatrixStream(expPerPosPerBranchMatrix.c_str());
expPerPosPerBranchMatrixStream.precision(6);
expPerPosPerBranchMatrixStream<<"Name\tLength\tBranches\tMean";
for (int pos = 0; pos <numOfpositions; ++pos){
expPerPosPerBranchMatrixStream<<"\tSite"<<pos+1;
}
expPerPosPerBranchMatrixStream<<"\n";
treeIterTopDownConst tIt(_tr);
int branchNum = 0;
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if(mynode->isRoot())
continue;
expPerPosPerBranchMatrixStream<<mynode->name()<<"\t"<<mynode->dis2father()<<"\t"<<branchNum<<"\t"<<_expChanges_NodeXY[mynode->id()][from][to]/numOfbranches;
for (int pos = 0; pos <numOfpositions; ++pos){
expPerPosPerBranchMatrixStream<<"\t"<<_expChanges_PosNodeXY[pos][mynode->id()][from][to];
}
expPerPosPerBranchMatrixStream<<"\n";
++branchNum;
}
expPerPosPerBranchMatrixStream.close();
}
///********************************************************************************************
//*********************************************************************************************/
//void computeCountsGL::fillCorrPerSelectedSites(Vdouble& correlationPerPos,VVdouble& expEventsPerPosPerBranch,VVdouble& expEventsPerPosPerBranch_B,const int selectedSite, const bool isPearson){
// int numOfpositions = expEventsPerPosPerBranch_B.size();
// //correlationPerPos.resize(numOfpositions);
// for (int pos = 0; pos <numOfpositions; ++pos){
// MDOUBLE correlation = 0;
// if(isMinEQMaxInVector(expEventsPerPosPerBranch[selectedSite]) || isMinEQMaxInVector(expEventsPerPosPerBranch_B[pos]))
// correlationPerPos[pos]=-99; // can't compute correlation
// else{
// if(isPearson)
// correlation = calcPearsonCorrelation(expEventsPerPosPerBranch[selectedSite], expEventsPerPosPerBranch_B[pos]);
// else
// correlation = calcRankCorrelation(expEventsPerPosPerBranch[selectedSite], expEventsPerPosPerBranch_B[pos]);
// correlationPerPos[pos]=correlation;
// }
// }
//}
/********************************************************************************************
Compute the Pearson / Spearman correlation among sites.
*********************************************************************************************/
//void computeCountsGL::computedCorrelations(const Vint& selectedPositions, const bool isNormalizeForBranch)
//{
// int numOfpositions = _sc.seqLen();
// int numOfbranches = _tr.getNodesNum()-1; // was -1, minus the root node
//
// //// Mapping vectors
// LOGnOUT(6, <<"Copy events vectors"<<endl);
// // Expectation
// fillMapValPerPosPerBranch(_expPerPosPerBranch01,0,1,_expChanges_PosNodeXY,isNormalizeForBranch);
// fillMapValPerPosPerBranch(_expPerPosPerBranch10,1,0,_expChanges_PosNodeXY,isNormalizeForBranch);
// _expPerPosPerBranch = _expPerPosPerBranch01; // gain and loss appended (double size vector)
// appendVectors(_expPerPosPerBranch, _expPerPosPerBranch10);
//
// //// correlation vectors, filled below
// LOGnOUT(6, <<"Resize correlation vectors vectors"<<endl);
// resizeMatrix(_correlationPerSitePerPosGainGainSpearman, selectedPositions.size(), numOfpositions);
// resizeMatrix(_correlationPerSitePerPosLossLossSpearman, selectedPositions.size(), numOfpositions);
// resizeMatrix(_correlationPerSitePerPosBothSpearman, selectedPositions.size(), numOfpositions);
//
// resizeMatrix(_correlationPerSitePerPosGainGainPearson, selectedPositions.size(), numOfpositions);
// resizeMatrix(_correlationPerSitePerPosLossLossPearson, selectedPositions.size(), numOfpositions);
// resizeMatrix(_correlationPerSitePerPosBothPearson, selectedPositions.size(), numOfpositions);
//
// for (int selectedSiteIndex = 0; selectedSiteIndex <selectedPositions.size(); ++selectedSiteIndex){
// int selectedSite = selectedPositions[selectedSiteIndex];
// LOGnOUT(6, <<"Compute pearson for G-G, L-L, both site"<<selectedSiteIndex<<endl);
// fillCorrPerSelectedSites(_correlationPerSitePerPosGainGainPearson[selectedSiteIndex],_expPerPosPerBranch01,selectedSite,true);
// fillCorrPerSelectedSites(_correlationPerSitePerPosLossLossPearson[selectedSiteIndex],_expPerPosPerBranch10,selectedSite,true);
// fillCorrPerSelectedSites(_correlationPerSitePerPosBothPearson[selectedSiteIndex],_expPerPosPerBranch,selectedSite,true);
//
// LOGnOUT(6, <<"Compute spearman for G-G, L-L site"<<selectedSiteIndex<<endl);
// fillCorrPerSelectedSites(_correlationPerSitePerPosGainGainSpearman[selectedSiteIndex],_expPerPosPerBranch01,selectedSite,false);
// fillCorrPerSelectedSites(_correlationPerSitePerPosLossLossSpearman[selectedSiteIndex],_expPerPosPerBranch10,selectedSite,false);
// fillCorrPerSelectedSites(_correlationPerSitePerPosBothSpearman[selectedSiteIndex],_expPerPosPerBranch,selectedSite,false);
// }
//}
/********************************************************************************************
PrintExpPerPosPerBranchMatrix (CoMap input)
NOTE!!! this version only consist of gain or loss values
Alternatively, (1) abs(gain+loss) (2) gain-loss (3) separate gain and loss matrices
*********************************************************************************************/
//void computeCountsGL::printComputedCorrelations(const Vint& selectedPositions, const bool isNormalizeForBranch, const bool correlationForZscore)
//{
// bool isTransform = false;
// bool isMinForPrint = true;
// bool isPearson = false;
// int precisionCorr = 8;
// MDOUBLE minForPrint = 0.1; // max =1
//
// int numOfpositions = _sc.seqLen();
// int numOfbranches = _tr.getNodesNum()-1; // was -1, minus the root node
//
// //// Mapping vectors
// LOGnOUT(6, <<"Copy events vectors"<<endl);
//
// //////////////////////////////////////////////////////////////////////////
// if(!gainLossOptions::_printComputedCorrelationsAllSites){
// for (int selectedSiteIndex = 0; selectedSiteIndex <selectedPositions.size(); ++selectedSiteIndex){
// int selectedSite = selectedPositions[selectedSiteIndex];
//
// MDOUBLE meanCorrBoth = computeAverage(_correlationPerSitePerPosBothPearson[selectedSiteIndex]);
// MDOUBLE stdCorrBoth = computeStd(_correlationPerSitePerPosBothPearson[selectedSiteIndex]);
// MDOUBLE meanCorrGainGain = computeAverage(_correlationPerSitePerPosGainGainPearson[selectedSiteIndex]);
// MDOUBLE stdCorrGainGain = computeStd(_correlationPerSitePerPosGainGainPearson[selectedSiteIndex]);
// MDOUBLE meanCorrLossLoss = computeAverage(_correlationPerSitePerPosLossLossPearson[selectedSiteIndex]);
// MDOUBLE stdCorrLossLoss = computeStd(_correlationPerSitePerPosLossLossPearson[selectedSiteIndex]);
//
//
// // for each selectedSite a new file is created
// LOGnOUT(4, <<"Correlations with site="<<selectedSite<<" With NormalizeForBranch "<<isNormalizeForBranch<<" With correlationForZscore "<<correlationForZscore<<endl);
// string corrPerSite = _outDir + "//" + "selectedCorr.Site"+ int2string(selectedSite+1)+ ".isNormForBr."+int2string(isNormalizeForBranch)/*+ ".isCorrForZ."+int2string(correlationForZscore)*/+ ".txt";
// //string corrPerSite = _outDir + "//" + "selectedCorr.Site"+ int2string(selectedSite+1)+".txt";
//
// ofstream corrPerSiteStream(corrPerSite.c_str());
// corrPerSiteStream.precision(precisionCorr);
// corrPerSiteStream<<"# "<<selectedSite+1<<"\n";
// corrPerSiteStream<<"# Both(gain N loss concat) correlation(Pearson): Ave= "<<meanCorrBoth<<" Std= "<<stdCorrBoth<<"\n";
// corrPerSiteStream<<"# Gain correlation(Pearson): Ave= "<<meanCorrGainGain<<" Std= "<<stdCorrGainGain<<"\n";
// corrPerSiteStream<<"# Loss correlation: Ave= "<<meanCorrLossLoss<<" Std= "<<stdCorrLossLoss<<"\n";
// corrPerSiteStream<<"pos"<<"\t"<<"bothPearson"<<"\t"<<"bothSpearman"<<"\t"<<"ExpGainGainPearson"<<"\t"<<"ExpLossLossPearson"<<"\t"<<"ExpGainGainSpearman"<<"\t"<<"ExpLossLossSpearman"<<"\n";
//
// for (int pos = 0; pos<numOfpositions; ++pos){
// if(selectedSite == pos) // since selectedSite starts from 1
// continue;
// bool isPosOneOfSelectedSites = false;
// if(gainLossOptions::_isIgnoreCorrelationAmongSelectedSites){
// for (int selectedSiteI = 0; selectedSiteI <selectedPositions.size(); ++selectedSiteI){
// int selectedS = selectedPositions[selectedSiteI];
// if(selectedS == pos){
// isPosOneOfSelectedSites = true;
// continue;
// }
// }
// if(isPosOneOfSelectedSites)
// continue;
// }
// corrPerSiteStream<<pos+1
// <<"\t"<<_correlationPerSitePerPosBothPearson[selectedSiteIndex][pos]<<"\t"<<_correlationPerSitePerPosBothSpearman[selectedSiteIndex][pos]
// <<"\t"<<_correlationPerSitePerPosGainGainPearson[selectedSiteIndex][pos]<<"\t"<<_correlationPerSitePerPosLossLossPearson[selectedSiteIndex][pos]
// <<"\t"<<_correlationPerSitePerPosGainGainSpearman[selectedSiteIndex][pos]<<"\t"<<_correlationPerSitePerPosLossLossSpearman[selectedSiteIndex][pos]<<"\n";
// }
// }
// }
// ////////////////////////////////////////////////////////////////////////// All-against-all different format
// else{
// string corrAllSites = _outDir + "//" + "allCorrelations.isNormForBr."+int2string(isNormalizeForBranch)+ ".isCorrForZ."+int2string(correlationForZscore)+ ".txt";
// ofstream* corrAllStream_p;
// corrAllStream_p = new ofstream(corrAllSites.c_str());
// corrAllStream_p->precision(precisionCorr);
// *corrAllStream_p<<"#COGA"<<"\t"<<"COGB"<<"\t"<<"posGainGain"<<"\t"<<"posLossLoss"<<"\t"<<"negGainGain"<<"\t"<<"negLossLoss"<<"\n";
// for (int selectedSiteIndex = 0; selectedSiteIndex <selectedPositions.size(); ++selectedSiteIndex){
// int selectedSite = selectedPositions[selectedSiteIndex];
//
// MDOUBLE meanCorrGainGain = computeAverage(_correlationPerSitePerPosGainGainPearson[selectedSiteIndex]);
// MDOUBLE stdCorrGainGain = computeStd(_correlationPerSitePerPosGainGainPearson[selectedSiteIndex]);
// MDOUBLE meanCorrLossLoss = computeAverage(_correlationPerSitePerPosLossLossPearson[selectedSiteIndex]);
// MDOUBLE stdCorrLossLoss = computeStd(_correlationPerSitePerPosLossLossPearson[selectedSiteIndex]);
//
// for (int pos = 0; pos<numOfpositions; ++pos){
// if(selectedSite == pos)
// continue;
// MDOUBLE correlationGainGain = _correlationPerSitePerPosGainGainPearson[selectedSiteIndex][pos];
// MDOUBLE correlationLossLoss = _correlationPerSitePerPosLossLossPearson[selectedSiteIndex][pos];
//
// if(correlationForZscore){
// correlationGainGain = (correlationGainGain - meanCorrGainGain)/stdCorrGainGain;
// correlationLossLoss = (correlationLossLoss - meanCorrLossLoss)/stdCorrLossLoss;
// }
// if(isMinForPrint && max(abs(correlationGainGain),abs(correlationLossLoss))<minForPrint)
// continue;
// MDOUBLE posCorrelationGainGain = (correlationGainGain >=0) ? correlationGainGain*1000-1 : 0;
// MDOUBLE negCorrelationGainGain = (correlationGainGain < 0) ? correlationGainGain*1000-1 : 0;
// MDOUBLE posCorrelationLossLoss = (correlationLossLoss >=0) ? correlationLossLoss*1000-1 : 0;
// MDOUBLE negCorrelationLossLoss = (correlationLossLoss < 0) ? correlationLossLoss*1000-1 : 0;
// if(isTransform){
// posCorrelationGainGain = pow(posCorrelationGainGain/10,2)/10;
// negCorrelationGainGain = pow(negCorrelationGainGain/10,2)/10;
// posCorrelationLossLoss = pow(posCorrelationLossLoss/10,2)/10;
// negCorrelationLossLoss = pow(negCorrelationLossLoss/10,2)/10;
// }
// *corrAllStream_p<<selectedSiteIndex+1<<"\t"<<pos+1<<"\t"<<(int)posCorrelationGainGain<<"\t"<<(int)posCorrelationLossLoss<<"\t"<<(int)negCorrelationGainGain<<"\t"<<(int)negCorrelationLossLoss<<"\n";
// }
// }
// }
//}
//
///********************************************************************************************
//*********************************************************************************************/
//void computeCountsGL::fillMapValPerPosPerBranch(VVdouble& expEventsPerPosPerBranch,const int from, const int to, VVVVdouble& map_PosNodeXY
// ,const bool isNormalizeForBranch, MDOUBLE* cutOff_p){
//
// int numOfpositions = _sc.seqLen();
// int numOfbranches = _tr.getNodesNum()-1; // was -1, minus the root node
//
// expEventsPerPosPerBranch.resize(numOfpositions);
// treeIterTopDownConst tIt(_tr);
// for (int pos = 0; pos <numOfpositions; ++pos){
// for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next())
// {
// if(mynode->isRoot())
// continue;
// MDOUBLE val = 0;
// if(isNormalizeForBranch){
// MDOUBLE normalizationFactor = _expChanges_NodeXY[mynode->id()][from][to]/numOfbranches; // _expChanges_NodeXY[mynode->id()][from][to]/numOfbranches
// val = (map_PosNodeXY[pos][mynode->id()][from][to] ) / normalizationFactor;
// }else{
// val = map_PosNodeXY[pos][mynode->id()][from][to];
// }
//
// if(cutOff_p){
// if(val>= *cutOff_p)
// expEventsPerPosPerBranch[pos].push_back(1);
// else
// expEventsPerPosPerBranch[pos].push_back(0);
// }
// else
// expEventsPerPosPerBranch[pos].push_back(val);
// }
// }
//}
/********************************************************************************************
printGainLossProbExpPerPosPerBranch 1.1
Get pos, and iterate over all branches:
1. print detailed file (out)
2. print summary over all branches (outSum)
*********************************************************************************************/
void computeCountsGL::printGainLossProbExpPerPosPerBranch(int pos, MDOUBLE probCutOff, MDOUBLE countCutOff, VVVdouble& probChanges, VVVdouble& expChanges, ostream& out, ostream& outSum)
{
MDOUBLE prob01 =0;
MDOUBLE prob10 =0;
MDOUBLE exp01 =0;
MDOUBLE exp10 =0;
MDOUBLE count01 =0;
MDOUBLE count10 =0;
countCutOff = floorf(countCutOff * pow(10.0,4) + 0.5) / pow(10.0,4); // if not rounded, perfect correlations may return 1.000002, for example
treeIterTopDownConst tIt(_tr);
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if(mynode->isRoot()) continue;
if (probChanges[mynode->id()][0][1] >= probCutOff || probCutOff == 0) // only per branch print must exceed cutoff
out<<"gain"<<"\t"<<pos+1<<"\t"<<mynode->name()<<"\t"<<mynode->dis2father()<<"\t"<<mynode->getDistance2ROOT()<<"\t"<<mynode->getMinimalDistance2OTU()<<"\t"<<mynode->getMinimalNumOfNodes2OTU()<<"\t"<<probChanges[mynode->id()][0][1]<<"\t"<<expChanges[mynode->id()][0][1]<<endl;
if (probChanges[mynode->id()][0][1] > countCutOff)
count01+= 1;
prob01+= probChanges[mynode->id()][0][1];
exp01+= expChanges[mynode->id()][0][1];
if (probChanges[mynode->id()][1][0] >= probCutOff || probCutOff == 0) // only per branch print must exceed cutoff
out<<"loss"<<"\t"<<pos+1<<"\t"<<mynode->name()<<"\t"<<mynode->dis2father()<<"\t"<<mynode->getDistance2ROOT()<<"\t"<<mynode->getMinimalDistance2OTU()<<"\t"<<mynode->getMinimalNumOfNodes2OTU()<<"\t"<<probChanges[mynode->id()][1][0]<<"\t"<<expChanges[mynode->id()][1][0]<<endl;
if (probChanges[mynode->id()][1][0] > countCutOff)
count10+= 1;
prob10+= probChanges[mynode->id()][1][0];
exp10+= expChanges[mynode->id()][1][0];
}
outSum<<pos+1<<"\t"<<prob01<<"\t"<<prob10<<"\t"<<exp01<<"\t"<<exp10<<"\t"<<count01<<"\t"<<count10<<endl;
}
/********************************************************************************************
FewCutOffs
*********************************************************************************************/
void computeCountsGL::printProbExpPerPosPerBranchFewCutOffs(MDOUBLE probCutOff)
{
MDOUBLE countCutOff;
MDOUBLE countCutOffLow = 0.1;
MDOUBLE countCutOffIncrem = 0.05;
MDOUBLE countCutOffHigh = 0.9;
string count01 = "count01_";
string count10 = "count10_";
//Math::Round(3.44, 1);
string gainLossProbExpPerPosPerBranch = _outDir + "//" + "gainLossProbExpPerPosPerBranch.txt";
ofstream gainLossProbExpPerPosPerBranchStream(gainLossProbExpPerPosPerBranch.c_str());
gainLossProbExpPerPosPerBranchStream.precision(PRECISION);
gainLossProbExpPerPosPerBranchStream<<"# print values over probCutOff "<<probCutOff<<endl;
gainLossProbExpPerPosPerBranchStream<<"G/L"<<"\t"<<"POS"<<"\t"<<"branch"<<"\t"<<"branchLength"<<"\t"<<"distance2root"<<"\t"<<"distance2NearestOTU"<<"\t"<<"numOfNodes2NearestOTU"<<"\t"<<"probability"<<"\t"<<"expectation"<<endl;
string gainLossProbExpPerPos = _outDir + "//" + "gainLossProbExpCountPerPos.txt";
ofstream gainLossCountProbPerPosStream(gainLossProbExpPerPos.c_str());
gainLossCountProbPerPosStream.precision(PRECISION);
gainLossCountProbPerPosStream<<"# print count over countCutOffLow="<<countCutOffLow<<" to countCutOffHigh="<<countCutOffHigh<<" with increment="<<countCutOffIncrem<<endl;
gainLossCountProbPerPosStream<<"POS"<<"\t"<<"prob01"<<"\t"<<"prob10"<<"\t"<<"exp01"<<"\t"<<"exp10"<<"\t"<<"prob01_Rec"<<"\t"<<"prob10_Rec"<<"\t"<<"exp01_Rec"<<"\t"<<"exp10_Rec"<<"\t"<<"prob01_Anc"<<"\t"<<"prob10_Anc"<<"\t"<<"exp01_Anc"<<"\t"<<"exp10_Anc"<<"\t";
// print all cut-offs
for(countCutOff=countCutOffLow; countCutOff<=countCutOffHigh ;countCutOff+=countCutOffIncrem){
countCutOff = floorf(countCutOff * pow(10.0,4) + 0.5) / pow(10.0,4); // if not rounded, perfect correlations may return 1.000002, for example
gainLossCountProbPerPosStream<<count01+double2string(countCutOff)<<"\t"<<count10+double2string(countCutOff)<<"\t";
}
gainLossCountProbPerPosStream<<endl;
for (int pos = 0; pos <_sc.seqLen(); ++pos){
printGainLossProbExpPerPosPerBranchFewCutOffs(pos, probCutOff,countCutOffLow,countCutOffIncrem,countCutOffHigh, _probChanges_PosNodeXY[pos],_expChanges_PosNodeXY[pos],gainLossProbExpPerPosPerBranchStream,gainLossCountProbPerPosStream);
}
}
/********************************************************************************************
*********************************************************************************************/
void computeCountsGL::printGainLossProbExpPerPosPerBranchFewCutOffs(int pos, MDOUBLE probCutOff,
MDOUBLE countCutOffLow,MDOUBLE countCutOffIncrem, MDOUBLE countCutOffHigh, VVVdouble& probChanges, VVVdouble& expChanges, ostream& out, ostream& outSum)
{
MDOUBLE prob01 =0;
MDOUBLE prob10 =0;
MDOUBLE exp01 =0;
MDOUBLE exp10 =0;
MDOUBLE prob01_R =0;
MDOUBLE prob10_R =0;
MDOUBLE exp01_R =0;
MDOUBLE exp10_R =0;
MDOUBLE prob01_Anc =0;
MDOUBLE prob10_Anc =0;
MDOUBLE exp01_Anc =0;
MDOUBLE exp10_Anc =0;
int FewCutOffsSize = (int)ceil((countCutOffHigh-countCutOffLow)/countCutOffIncrem)+1;
Vdouble count01(FewCutOffsSize);
Vdouble count10(FewCutOffsSize);
MDOUBLE countCutOff;
int i;
treeIterTopDownConst tIt(_tr);
for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next()) {
if (probChanges[mynode->id()][0][1] >= probCutOff) // only per branch print must exceed cutoff
out<<"gain"<<"\t"<<pos+1<<"\t"<<mynode->name()<<"\t"<<mynode->dis2father()<<"\t"<<mynode->getDistance2ROOT()<<"\t"<<mynode->getMinimalDistance2OTU()<<"\t"<<mynode->getMinimalNumOfNodes2OTU()<<"\t"<<probChanges[mynode->id()][0][1]<<"\t"<<expChanges[mynode->id()][0][1]<<endl;
prob01+= probChanges[mynode->id()][0][1];
exp01+= expChanges[mynode->id()][0][1];
// if(mynode->isLeaf() || (mynode->getDistance2ROOT()<_distanceFromRootForRecent) ){
if(mynode->isLeaf() || (mynode->getMinimalDistance2OTU()<_distanceFromNearestOTUForRecent) ){
prob01_R+= probChanges[mynode->id()][0][1];
exp01_R+= expChanges[mynode->id()][0][1];
}
else{
prob01_Anc+= probChanges[mynode->id()][0][1];
exp01_Anc+= expChanges[mynode->id()][0][1];
}
i = 0;
for( countCutOff=countCutOffLow; countCutOff<=countCutOffHigh ; countCutOff+=countCutOffIncrem){
countCutOff = floorf(countCutOff * pow(10.0,4) + 0.5) / pow(10.0,4); // if not rounded, perfect correlations may return 1.000002, for example
if (probChanges[mynode->id()][0][1] > countCutOff)
count01[i]+= 1;
++i;
}
if (probChanges[mynode->id()][1][0] >= probCutOff) // only per branch print must exceed cutoff
out<<"loss"<<"\t"<<pos+1<<"\t"<<mynode->name()<<"\t"<<mynode->dis2father()<<"\t"<<mynode->getDistance2ROOT()<<"\t"<<mynode->getMinimalDistance2OTU()<<"\t"<<mynode->getMinimalNumOfNodes2OTU()<<"\t"<<probChanges[mynode->id()][1][0]<<"\t"<<expChanges[mynode->id()][1][0]<<endl;
prob10+= probChanges[mynode->id()][1][0];
exp10+= expChanges[mynode->id()][1][0];
// if(mynode->isLeaf() || mynode->getDistance2ROOT() < _distanceFromRootForRecent){
if(mynode->isLeaf() || mynode->getMinimalDistance2OTU() < _distanceFromNearestOTUForRecent){
prob10_R+= probChanges[mynode->id()][1][0];
exp10_R+= expChanges[mynode->id()][1][0];
}
else{
prob10_Anc+= probChanges[mynode->id()][1][0];
exp10_Anc+= expChanges[mynode->id()][1][0];
}
i = 0;
for(countCutOff=countCutOffLow; countCutOff<=countCutOffHigh ; countCutOff+=countCutOffIncrem){
countCutOff = floorf(countCutOff * pow(10.0,4) + 0.5) / pow(10.0,4); // if not rounded, perfect correlations may return 1.000002, for example
if (probChanges[mynode->id()][1][0] > countCutOff)
count10[i]+= 1;
++i;
}
}
outSum<<pos+1<<"\t"<<prob01<<"\t"<<prob10<<"\t"<<exp01<<"\t"<<exp10
<<"\t"<<prob01_R<<"\t"<<prob10_R<<"\t"<<exp01_R<<"\t"<<exp10_R
<<"\t"<<prob01_Anc<<"\t"<<prob10_Anc<<"\t"<<exp01_Anc<<"\t"<<exp10_Anc<<"\t";
// print all cut-offs
i = 0;
for(countCutOff=countCutOffLow; countCutOff<=countCutOffHigh ; countCutOff+=countCutOffIncrem){
countCutOff = floorf(countCutOff * pow(10.0,4) + 0.5) / pow(10.0,4); // if not rounded, perfect correlations may return 1.000002, for example
outSum<<count01[i]<<"\t"<<count10[i]<<"\t";
++i;
}
outSum<<endl;
}
/********************************************************************************************
*********************************************************************************************/
//void computeCountsGL::computeMeanAndSdPerBranch(Vdouble& meanEventsPerBranch01, Vdouble& meanEventsPerBranch10, Vdouble& sdEventsPerBranch01,Vdouble& sdEventsPerBranch10){
// int numOfpositions = _sc.seqLen();
// Vdouble eventsAllPos01(numOfpositions);
// Vdouble eventsAllPos10(numOfpositions);
//
// treeIterTopDownConst tIt(_tr);
// for (tree::nodeP mynode = tIt.first(); mynode != tIt.end(); mynode = tIt.next())
// {
// if(mynode->isRoot())
// continue;
// for (int pos = 0; pos <numOfpositions; ++pos){
// eventsAllPos01[pos] = _expChanges_PosNodeXY[pos][mynode->id()][0][1];
// eventsAllPos10[pos] = _expChanges_PosNodeXY[pos][mynode->id()][1][0];
// }
// meanEventsPerBranch01[mynode->id()]= computeAverage(eventsAllPos01);
// meanEventsPerBranch10[mynode->id()]= computeAverage(eventsAllPos10);
// sdEventsPerBranch01[mynode->id()] = computeStd(eventsAllPos01);
// sdEventsPerBranch10[mynode->id()] = computeStd(eventsAllPos10);
// }
//}
|