File: train_unsupervised.py

package info (click to toggle)
fasttext 0.9.2%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,900 kB
  • sloc: cpp: 5,458; python: 2,425; javascript: 635; sh: 616; makefile: 102; xml: 81; perl: 43
file content (56 lines) | stat: -rw-r--r-- 1,615 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python

# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division, absolute_import, print_function

from fasttext import train_unsupervised
import numpy as np
import os
from scipy import stats


# Because of fasttext we don't need to account for OOV
def compute_similarity(data_path):
    def similarity(v1, v2):
        n1 = np.linalg.norm(v1)
        n2 = np.linalg.norm(v2)
        return np.dot(v1, v2) / n1 / n2

    mysim = []
    gold = []

    with open(data_path, 'rb') as fin:
        for line in fin:
            tline = line.split()
            word1 = tline[0].lower()
            word2 = tline[1].lower()

            v1 = model.get_word_vector(word1)
            v2 = model.get_word_vector(word2)
            d = similarity(v1, v2)
            mysim.append(d)
            gold.append(float(tline[2]))

    corr = stats.spearmanr(mysim, gold)
    dataset = os.path.basename(data_path)
    correlation = corr[0] * 100
    return dataset, correlation, 0


if __name__ == "__main__":
    model = train_unsupervised(
        input=os.path.join(os.getenv("DATADIR", ''), 'fil9'),
        model='skipgram',
    )
    model.save_model("fil9.bin")
    dataset, corr, oov = compute_similarity('rw.txt')
    print("{0:20s}: {1:2.0f}  (OOV: {2:2.0f}%)".format(dataset, corr, 0))