1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/* $Id$
*
* Resolve ranges of positional and named aggregates, where the type
* is an unconstraint array.
*
* Copyright (C) 2009 FAUmachine Team <info@faumachine.org>.
* This program is free software. You can redistribute it and/or modify it
* under the terms of the GNU General Public License, either version 2 of
* the License, or (at your option) any later version. See COPYING.
*/
#if 1 /* that is obsolete... use <cstdint> instead. */
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif /* __STDC_LIMIT_MACROS */
extern "C" {
#include "stdint.h"
};
#endif
#include "frontend/visitor/UnconstraintBounds.hpp"
#include "frontend/ast/Aggregate.hpp"
#include "frontend/ast/ConstInteger.hpp"
#include "frontend/ast/UnconstrainedArrayType.hpp"
#include "frontend/ast/RangeConstraintType.hpp"
#include "frontend/visitor/ConstantPropagation.hpp"
#include "frontend/visitor/ResolveTypes.hpp"
namespace ast {
UnconstraintBounds::UnconstraintBounds() : bounds(NULL),
low(INT64_MAX),
high(INT64_MIN),
numElements(0),
positional(true)
{
}
void
UnconstraintBounds::visit(Aggregate &node)
{
// first fold constants (to reduce locally static expressions
// in choices)
#if 0 /* FIXME */
ConstantPropagation cp;
node.accept(cp);
#endif
assert(node.associations != NULL);
this->listTraverse(*node.associations);
if (this->positional) {
// lrm 7.3.2.2: need to determine bounds
// by base type.
std::list<DiscreteRange*> drl;
const UnconstrainedArrayType *ua =
ResolveTypes::pickupIndexConstraint(node.type, drl);
// constraint mustn't be set yet by type.
assert(drl.empty());
DiscreteRange *dr = UnconstraintBounds::findIndexRange(ua);
// FIXME downto...
switch (dr->direction) {
case DiscreteRange::DIRECTION_DOWN:
assert(false);
break;
default:
break;
}
this->low = dr->getLowerBound();
this->high = this->low - 1 + this->numElements;
// check for overflow of NULL array
if (this->numElements == 0) {
assert(this->high < this->low);
}
}
ConstInteger *lowBound = new ConstInteger(this->low, node.location);
ConstInteger *upBound = new ConstInteger(this->high, node.location);
this->bounds = new DiscreteRange(
lowBound,
upBound,
DiscreteRange::DIRECTION_UP,
node.location);
}
void
UnconstraintBounds::visit(ElementAssociation &node)
{
if (node.choices != NULL) {
// named association
this->positional = false;
this->listTraverse(*node.choices);
} else {
this->numElements++;
}
}
void
UnconstraintBounds::visit(Others &node)
{
//TODO register error
assert(false);
}
void
UnconstraintBounds::visit(ConstInteger &node)
{
// must have come from a formal choice.
if (node.value < this->low) {
this->low = node.value;
}
if (this->high < node.value) {
this->high = node.value;
}
}
void
UnconstraintBounds::visit(DiscreteRange &node)
{
assert(node.from != NULL);
assert(node.to != NULL);
node.from->accept(*this);
node.to->accept(*this);
}
void
UnconstraintBounds::process(AstNode &node)
{
// FIXME register error? or is it a logic error?
assert(false);
}
DiscreteRange *
UnconstraintBounds::findIndexRange(const UnconstrainedArrayType *at)
{
// FIXME specification not yet clear to me about
// multidimensional arrays... ignore for now.
assert(at->indexTypes->size() == 1);
const TypeDeclaration *it = at->indexTypes->front();
assert(it != NULL);
/* try to determine constraint from SubtypeIndication */
const SubtypeIndication *sit =
dynamic_cast<const SubtypeIndication*>(it);
while (sit->constraint == NULL) {
const SubtypeIndication *sit2 =
dynamic_cast<const SubtypeIndication*>(
sit->declaration);
if (sit2 == NULL) {
break;
}
sit = sit2;
}
if (sit->constraint != NULL) {
return sit->constraint;
}
// not a subtype
const RangeConstraintType *rt =
dynamic_cast<const RangeConstraintType*>(sit->declaration);
assert(rt != NULL);
assert(rt->constraint != NULL);
return rt->constraint;
}
}; /* namespace ast */
|