File: memory.c

package info (click to toggle)
faumachine 20100527-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 53,836 kB
  • ctags: 20,552
  • sloc: ansic: 179,550; asm: 3,645; makefile: 3,611; perl: 2,103; sh: 1,529; python: 600; xml: 563; lex: 210; vhdl: 204
file content (1029 lines) | stat: -rw-r--r-- 21,294 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
/*
 * $Id: memory.c,v 1.77 2009-08-03 06:49:41 vrsieh Exp $
 *
 * Copyright (C) 2003-2009 FAUmachine Team <info@faumachine.org>.
 * This program is free software. You can redistribute it and/or modify it
 * under the terms of the GNU General Public License, either version 2 of
 * the License, or (at your option) any later version. See COPYING.
 */

/* Define it to get debug output of any access to that page range. */
#if 0
#define DEBUG_START	0xc0000
#define DEBUG_LENGTH	0x10000
#else
#undef DEBUG_START
#undef DEBUG_LENGTH
#endif

/*
 * Configure options
 */
/* Number of possible simultaneous faults. */
#define NFAULTS			16

#include "config.h"

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "system.h"
#include "glue-main.h"
#include "glue-shm.h"

#include "memory.h"

/*
 * Types
 */
struct cpssp {
	uint32_t *haddr[2];

	unsigned long mem_size[2];

	struct sig_cs *cs[2];

	struct fault {
		enum type {
			UNUSED,
			FLIP,
			STUCK_AT_0,
			STUCK_AT_1,
			COUPLING
		} type;
		int active;
		unsigned int side;
		unsigned long addr;
		unsigned int bit;
		unsigned long addr2;
		unsigned int bit2;

		struct sig_boolean *sig;
	} fault[NFAULTS];

/* eeprom component */
#define NAME	spd_eeprom
#define STATE
#include "arch_philips_pcx8582X-2.c"
#undef STATE
#undef NAME
};


#define NAME		spd_eeprom
#define NAME_(x)	spd_eeprom_ ## x
#define BEHAVIOR
#include "arch_philips_pcx8582X-2.c"
#undef BEHAVIOR
#undef NAME_
#undef NAME

static unsigned char *
memory_access(struct cpssp *cpssp, unsigned int side, unsigned long addr)
{
	addr &= ~0xfffUL;
	assert(/* 0 <= addr && */ addr < cpssp->mem_size[side]);

	return (unsigned char *) cpssp->haddr[side] + addr;
}

static int
memory_readl(
	void *_cpssp,
	unsigned int side,
	uint32_t *valp,
	unsigned long addr
)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;
	unsigned char *va;
	uint32_t lval;
	uint32_t lval2;
	unsigned int bit;
	unsigned int i;

	assert((addr & 3) == 0);

	/*
	 * Check whether side is available.
	 */
	if (cpssp->mem_size[side] == 0) {
		return -1;
	}

	addr &= cpssp->mem_size[side] - 1;

	assert(/* 0 <= addr && */ addr < cpssp->mem_size[side]);

	/*
	 * Read word.
	 */
	va = memory_access(cpssp, side, addr);

	lval = *(uint32_t *) (va + addr - (addr & ~0xfffUL));

	/*
	 * Do fault injection.
	 */
	for (i = 0; i < sizeof(cpssp->fault) / sizeof(cpssp->fault[0]); i++) {
		if (cpssp->fault[i].type != UNUSED
		 && cpssp->fault[i].active
		 && cpssp->fault[i].side == side
		 && cpssp->fault[i].addr == addr) {
			switch (cpssp->fault[i].type) {
			case STUCK_AT_0:
				/* Clear faulty bit. */
				lval &= ~(1 << cpssp->fault[i].bit);
				break;
			case STUCK_AT_1:
				/* Set faulty bit. */
				lval |=  (1 << cpssp->fault[i].bit);
				break;
			case COUPLING:
				/* Read faulty bit from coupled cell. */
				memory_readl(cpssp, side, &lval2, cpssp->fault[i].addr2);
				bit = (lval2 >> cpssp->fault[i].bit2) & 1;

				lval &= ~(1 << cpssp->fault[i].bit);
				lval |= bit << cpssp->fault[i].bit;
				break;
			default:
				assert(0);
			}
		}
	}

#ifdef DEBUG_START
	if (loglevel) {
		fprintf(stderr, "Reading %08lx from memory at %08lx\n",
				(unsigned long) lval, 
				(unsigned long) addr);
	}
#endif

	*valp = lval;
	return 0;
}

static int
memory_writel(
	void *_cpssp,
	unsigned int side,
	uint32_t val,
	unsigned long addr
)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;
	unsigned char *va;
	unsigned int bit;
	uint32_t val2;
	unsigned int i;

	assert((addr & 3) == 0);

	/*
	 * Check whether side is available.
	 */
	if (cpssp->mem_size[side] == 0) {
		return -1;
	}

	addr &= cpssp->mem_size[side] - 1;

	assert(/* 0 <= addr && */ addr < cpssp->mem_size[side]);

	/*
	 * Write word.
	 */
	va = memory_access(cpssp, side, addr);

	*(uint32_t *) (va + addr - (addr & ~0xfffUL)) = val;

	/*
	 * Do fault injection.
	 */
	for (i = 0; i < sizeof(cpssp->fault) / sizeof(cpssp->fault[0]); i++) {
		if (cpssp->fault[i].type != UNUSED
		 && cpssp->fault[i].active
		 && cpssp->fault[i].side == side
		 && cpssp->fault[i].addr == addr) {
			switch (cpssp->fault[i].type) {
			case STUCK_AT_0:
			case STUCK_AT_1:
				/* Nothing to do. */
				break;
			case COUPLING:
				/* Change bit in coupled cell, too. */
				bit = (val >> cpssp->fault[i].bit) & 1;

				memory_readl(cpssp, side, &val2, cpssp->fault[i].addr2);
				val2 &= ~(1 << cpssp->fault[i].bit2);
				val2 |= bit << cpssp->fault[i].bit2;
				memory_writel(cpssp, side, val2, cpssp->fault[i].addr2);
				break;
			default:
				assert(0);
			}
		}
	}

#ifdef DEBUG_START
	if (loglevel) {
		fprintf(stderr, "Writing %08lx to memory at %08lx\n",
				(unsigned long) val, 
				(unsigned long) addr);
	}
#endif

	return 0;
}

static int
memory_port(
	struct cpssp *cpssp,
	const char *port,
	enum type *typep,
	unsigned int *sidep,
	unsigned long *addrp,
	unsigned int *bitp,
	unsigned long *addr2p,
	unsigned int *bit2p
)
{
	char *port2;

	/* Get Fault Type */
	if (strncmp(port, "bitflip", strlen("bitflip")) == 0) {
		*typep = FLIP;
		port += strlen("bitflip");
	} else if (strncmp(port, "stuck_at_0", strlen("stuck_at_0")) == 0) {
		*typep = STUCK_AT_0;
		port += strlen("stuck_at_0");
	} else if (strncmp(port, "stuck_at_1", strlen("stuck_at_1")) == 0) {
		*typep = STUCK_AT_1;
		port += strlen("stuck_at_1");
	} else if (strncmp(port, "coupling", strlen("coupling")) == 0) {
		*typep = COUPLING;
		port += strlen("coupling");
	} else {
		return 1;
	}

	/* Skip / */
	if (*port == '/') {
		port++;
	} else {
		return 1;
	}

	/* Get Address */
	*addrp = strtoul(port, &port2, 0);
	port = port2;

	/* Skip / */
	if (*port == '/') {
		port++;
	} else {
		return 1;
	}

	/* Get Bit Number */
	*bitp = strtoul(port, &port2, 0);
	port = port2;

	*bitp += (*addrp & 3) * 8;
	*addrp &= ~3;

	if (*typep == COUPLING) {
		/* Skip / */
		if (*port == '/') {
			port++;
		} else {
			return 1;
		}

		/* Get Address */
		*addr2p = strtoul(port, &port2, 0);
		port = port2;

		/* Skip / */
		if (*port == '/') {
			port++;
		} else {
			return 1;
		}

		/* Get Bit Number */
		*bit2p = strtoul(port, &port2, 0);
		port = port2;

		*bit2p += (*addr2p & 3) * 8;
		*addr2p &= ~3;
	}

	if (*port != '\0') {
		return 1;
	}

	/* Get Side - FIXME */
	*sidep = *addrp / cpssp->mem_size[0];
	*addrp %= cpssp->mem_size[0];

	return 0;
}

static void
memory_fault_set(void *_cpssp, unsigned int i, unsigned int val)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;
	unsigned int side;
	unsigned long addr;
	unsigned int bit;
	unsigned long addr2;
	unsigned int bit2;

	assert(cpssp->fault[i].type != UNUSED);

	side = cpssp->fault[i].side;
	addr = cpssp->fault[i].addr;
	bit = cpssp->fault[i].bit;
	addr2 = cpssp->fault[i].addr2;
	bit2 = cpssp->fault[i].bit2;

	if (cpssp->fault[i].type == FLIP) {
		if (val) {
			uint32_t data;

			memory_readl(cpssp, side, &data, addr);
			data ^= 1 << bit;
			memory_writel(cpssp, side, data, addr);
		}

	} else {
		cpssp->fault[i].active = val;

		sig_cs_unmap(cpssp->cs[side], cpssp, addr, 4);
		if (cpssp->fault[i].type == COUPLING
		 && addr != addr2) {
			sig_cs_unmap(cpssp->cs[side], cpssp, addr2, 4);
		}
	}
}

static void
memory_fault_set0(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 0, val);
}

static void
memory_fault_set1(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 1, val);
}

static void
memory_fault_set2(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 2, val);
}

static void
memory_fault_set3(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 3, val);
}

static void
memory_fault_set4(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 4, val);
}

static void
memory_fault_set5(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 5, val);
}

static void
memory_fault_set6(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 6, val);
}

static void
memory_fault_set7(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 7, val);
}

static void
memory_fault_set8(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 8, val);
}

static void
memory_fault_set9(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 9, val);
}

static void
memory_fault_set10(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 10, val);
}

static void
memory_fault_set11(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 11, val);
}

static void
memory_fault_set12(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 12, val);
}

static void
memory_fault_set13(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 13, val);
}

static void
memory_fault_set14(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 14, val);
}

static void
memory_fault_set15(void *_cpssp, unsigned int val)
{
	memory_fault_set(_cpssp, 15, val);
}
	
static void
memory_connect(void *_cpssp, const char *port, void *_sig)
{
	static const struct sig_boolean_funcs fault_funcs[] = {
		{ .set = memory_fault_set0, },
		{ .set = memory_fault_set1, },
		{ .set = memory_fault_set2, },
		{ .set = memory_fault_set3, },
		{ .set = memory_fault_set4, },
		{ .set = memory_fault_set5, },
		{ .set = memory_fault_set6, },
		{ .set = memory_fault_set7, },
		{ .set = memory_fault_set8, },
		{ .set = memory_fault_set9, },
		{ .set = memory_fault_set10, },
		{ .set = memory_fault_set11, },
		{ .set = memory_fault_set12, },
		{ .set = memory_fault_set13, },
		{ .set = memory_fault_set14, },
		{ .set = memory_fault_set15, },
	};
	struct cpssp *cpssp = (struct cpssp *) _cpssp;
	struct sig_boolean *sig = (struct sig_boolean *) _sig;
	enum type type;
	unsigned int side;
	unsigned long addr;
	unsigned int bit;
	unsigned long addr2;
	unsigned int bit2;
	unsigned int i;

	assert(sizeof(fault_funcs) / sizeof(fault_funcs[0])
			== sizeof(cpssp->fault) / sizeof(cpssp->fault[0]));

	if (memory_port(_cpssp, port, &type,
			&side, &addr, &bit, &addr2, &bit2)) {
		return;
	}

	/* Lookup Unused Entry */
	for (i = 0; ; i++) {
		assert(i < sizeof(cpssp->fault) / sizeof(cpssp->fault[0]));
		if (cpssp->fault[i].type == UNUSED) {
			break;
		}
	}

	/* Add Entry */
	cpssp->fault[i].type = type;
	cpssp->fault[i].active = 0;
	cpssp->fault[i].side = side;
	cpssp->fault[i].addr = addr & ~0x3UL;
	cpssp->fault[i].bit = bit + (addr & 3) * 8;
	cpssp->fault[i].addr2 = addr2 & ~0x3UL;
	cpssp->fault[i].bit2 = bit2 + (addr2 & 3) * 8;

	cpssp->fault[i].sig = sig;

	sig_boolean_connect_in(cpssp->fault[i].sig, cpssp, &fault_funcs[i]);
}

static void
memory_disconnect(void *_cpssp, const char *port)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;
	enum type type;
	unsigned int side;
	unsigned long addr;
	unsigned int bit;
	unsigned long addr2;
	unsigned int bit2;
	unsigned int i;

	if (memory_port(_cpssp, port, &type,
			&side, &addr, &bit, &addr2, &bit2)) {
		return;
	}

	/* Lookup Entry */
	for (i = 0; ; i++) {
		assert(i < sizeof(cpssp->fault) / sizeof(cpssp->fault[0]));
		if (cpssp->fault[i].type == type
		 && cpssp->fault[i].side == side
		 && cpssp->fault[i].addr == (addr & ~0x3UL)
		 && cpssp->fault[i].bit == bit + (addr & 3) * 8
		 && cpssp->fault[i].addr2 == (addr2 & ~0x3UL)
		 && cpssp->fault[i].bit2 == bit2 + (addr2 & 3) * 8) {
			/* Entry found. */
			break;
		}
	}

	// sig_boolean_disconnect_in(cpssp->fault[i].sig, cpssp);

	/* Disable Entry */
	cpssp->fault[i].type = UNUSED;
}

static int
memory_read(
	void *_cpssp,
	unsigned int side,
	uint32_t addr,
	unsigned int bs,
	uint32_t *valp
)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;

	assert(! (addr & 3));

	return memory_readl(cpssp, side, valp, addr);
}

static int
memory_write(
	void *_cpssp,
	unsigned int side,
	uint32_t addr,
	unsigned int bs,
	uint32_t val
)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;
	uint32_t lval;

	assert(! (addr & 3));

	if (bs == 0xf) {
		lval = val;

	} else {
		if (memory_readl(cpssp, side, &lval, addr) < 0) {
			return -1;
		}

		if ((bs >> 0) & 1) {
			lval &= ~(0xff << 0);
			lval |= val & (0xff << 0);
		}
		if ((bs >> 1) & 1) {
			lval &= ~(0xff << 8);
			lval |= val & (0xff << 8);
		}
		if ((bs >> 2) & 1) {
			lval &= ~(0xff << 16);
			lval |= val & (0xff << 16);
		}
		if ((bs >> 3) & 1) {
			lval &= ~(0xff << 24);
			lval |= val & (0xff << 24);
		}
	}

	if (memory_writel(cpssp, side, lval, addr & ~0x3UL) < 0) {
		return -1;
	}

	return 0;
}

static int
memory_map(
	void *_cpssp,
	unsigned int side,
	unsigned long addr,
	char **haddr_mr_p,
	char **haddr_mw_p
)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;
	unsigned long haddr;
	unsigned long laddr;
	unsigned long start;
	unsigned long end;
	unsigned int i;

	/*
	 * Check whether side is available.
	 */
	if (cpssp->mem_size[side] == 0) {
		return -1;
	}

	laddr = addr & ~0xfffUL & (cpssp->mem_size[side] - 1);
	haddr = addr & ~0xfffUL & ~(cpssp->mem_size[side] - 1);

	assert(/* 0 <= laddr && */ laddr < cpssp->mem_size[side]);

	/*
	 * Check for debug/faulty pages.
	 */
	start = 0;
	end = cpssp->mem_size[side];

#ifdef DEBUG_START
	/* Check for debug pages. */
	if (laddr < DEBUG_START) {
		if (DEBUG_START < end) {
			/* Addressing range below debug page. */
			end = DEBUG_START;
		}
	} else if (DEBUG_START + DEBUG_LENGTH <= laddr) {
		if (start <= DEBUG_START) {
			/* Addressing range above debug page. */
			start = DEBUG_START + DEBUG_LENGTH;
		}
	} else {
		/* Addressing debug page. */
		*haddr_mr_p =
		*haddr_mw_p = NULL;
		return 0;
	}
#endif

	/* Check for faulty pages. */
	for (i = 0; i < sizeof(cpssp->fault) / sizeof(cpssp->fault[0]); i++) {
		unsigned long badpage;

		if (cpssp->fault[i].type == UNUSED
		 || ! cpssp->fault[i].active
		 || cpssp->fault[i].side != side) {
			continue;
		}

		badpage = cpssp->fault[i].addr & ~0xfffUL;

		if (laddr < badpage) {
			if (badpage < end) {
				/* Addressing range below bad page. */
				end = badpage;
			}
		} else if (badpage + 0x1000 <= laddr) {
			if (start <= badpage) {
				/* Addressing range above bad page. */
				start = badpage + 0x1000;
			}
		} else {
			/* Addressing bad page. */
			*haddr_mr_p = NULL;
			*haddr_mw_p = NULL;
			return 0;
		}
	}

	*haddr_mr_p =
	*haddr_mw_p = ((char *) cpssp->haddr[side] + laddr);
	return 0;
}

static int
memory_0_read(void *_cpssp, uint32_t addr, unsigned int bs, uint32_t *valp)
{
	return memory_read(_cpssp, 0, addr, bs, valp);
}

static int
memory_0_write(void *_cpssp, uint32_t addr, unsigned int bs, uint32_t val)
{
	return memory_write(_cpssp, 0, addr, bs, val);
}

static int
memory_0_map(
	void *_cpssp,
	unsigned long addr,
	char **haddr_mr_p,
	char **haddr_mw_p
)
{
	return memory_map(_cpssp, 0, addr, haddr_mr_p, haddr_mw_p);
}

static int
memory_1_read(void *_cpssp, uint32_t addr, unsigned int bs, uint32_t *valp)
{
	return memory_read(_cpssp, 1, addr, bs, valp);
}

static int
memory_1_write(void *_cpssp, uint32_t addr, unsigned int bs, uint32_t val)
{
	return memory_write(_cpssp, 1, addr, bs, val);
}

static int
memory_1_map(
	void *_cpssp,
	unsigned long addr,
	char **haddr_mr_p,
	char **haddr_mw_p
)
{
	return memory_map(_cpssp, 1, addr, haddr_mr_p, haddr_mw_p);
}

static void
memory_id0_set(void *_cpssp, unsigned int val)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;

	spd_eeprom_a0_set(cpssp, val);
}

static void
memory_id1_set(void *_cpssp, unsigned int val)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;

	spd_eeprom_a1_set(cpssp, val);
}

static void
memory_id2_set(void *_cpssp, unsigned int val)
{
	struct cpssp *cpssp = (struct cpssp *) _cpssp;

	spd_eeprom_a2_set(cpssp, val);
}

static unsigned long
sim_log2(unsigned long x)
{
	unsigned int res;

	assert(x != 0);

	for (res = 0; x != 1; res++) {
		x >>= 1;
	}

	return res;
}

static void
memory_stop_transaction(void *_cpssp)
{
        struct cpssp *cpssp = (struct cpssp *) _cpssp;

        spd_eeprom_stop_transaction(cpssp);
}

static void
memory_read_byte(void *_cpssp, unsigned char *val)
{
        struct cpssp *cpssp = (struct cpssp *) _cpssp;

        spd_eeprom_read_byte(cpssp, val);
}

static bool
memory_write_byte(void *_cpssp, unsigned char val)
{
        struct cpssp *cpssp = (struct cpssp *) _cpssp;

        return spd_eeprom_write_byte(cpssp, val);
}

static bool
memory_ack_addr(void *_cpssp, unsigned char addr)
{
        struct cpssp *cpssp = (struct cpssp *) _cpssp;

        return spd_eeprom_ack_addr(cpssp, addr);
}

static void
memory_eeprom_init(
	struct cpssp *cpssp, 
	struct sig_i2c_bus *i2cbus
)
{
	static const struct sig_i2c_bus_funcs spd_funcs = {
		.ack_addr = memory_ack_addr,
		.stop_transaction = memory_stop_transaction,
		.read_byte = memory_read_byte,
		.write_byte = memory_write_byte,
	};
	static unsigned char contents[256] = {
		/* 0x00: Number of bytes in SPD EEPROM. */
		0x80, /* -> 128 bytes used */
		/* 0x01: Size of EEPROM in bytes. */
		0x08, /* 256 bytes. */
		/* 0x02: Type of memory. */
		0x02, /* EDO. */
		/* 0x03: Number of address bits for row. */
		0x00,
		/* 0x04: Number of address bits for column. */
		0x00,
		/* 0x05: Number of Module Rows */
		1, /* FIXME VOSSI */
		/* 0x06: Module Data Width (Low Byte) */
		64, /* FIXME VOSSI */
		/* 0x07: Module Data Width (High Byte) */
		0, /* FIXME VOSSI */
		/* 0x08: SDRAM module signal voltage interface */
		0,
		/* 0x09: SDRAM cycle time (highest CAS latency) */
		0,
		/* 0x0a: SDRAM access time from clock */
		0,
		/* 0x0b: Module Configration Type */
		0, /* No parity, no ECC, no ... */
		/* 0x0c */
		0,
		/* 0x0d: SDRAM Width (Primary SDRAM). */
		64,
		/* 0x0e: Error Checking SDRAM Width */
		0, /* Undefined */ /* FIXME VOSSI */
		/* 0x10: SDRAM device attributes, burst length supported */
		0,
		/* 0x11: SDRAM Device Attributes, Number of Banks on 
		 *       SDRAM Device*/
		0,
		/* 0x12: SDRAM Device Attributes, CAS Latency */
		0x7f,
		/* 0x13: SDRAM Device Attributes, CS Latency */
		0,
		/* 0x14: SDRAM Device Attributes, WE Latency */
		0,
		/* 0x15: SDRAM Module Attributes */
			/* bit 7: TBD */
			/* bit 6: Redundant Row Addr */
			/* bit 5: Differential Clock Input */
			/* bit 4: Registered DQMB Inputs */
			/* bit 3: Buffered DQMB Inputs */
			/* bit 2: On-Card PLL (Clock) */
			/* bit 1: Registered Address/Control Inputs */
			/* bit 0: Buffered Address/Control Inputs */
		0,
		/* 0x16: SDRAM Device Attributes, general */
		0,
		/* 0x17: SDRAM Cycle time (2nd highest CAS latency) */
		(4 << 4) | (5 << 0), /* 4.5ns */
		/* 0x18: SDRAM Access from Clock (2nd highest CAS latency) */
		(4 << 4) | (5 << 0), /* 4.5ns */
		/* ... */
	};

	sig_i2c_bus_connect_cooked(i2cbus, cpssp, &spd_funcs);

	/* sanitize defaults a little bit more */

	/* 0x03: Number of address bits for row. */
	contents[0x03] = sim_log2(cpssp->mem_size[0]) / 2;
	/* 0x04: Number of address bits for column. */
	contents[0x04] = sim_log2(cpssp->mem_size[0]) 
			- sim_log2(cpssp->mem_size[0]) / 2;
	/* 0x11: SDRAM Device Attributes, Number of Banks on 
	 *       SDRAM Device*/
	contents[0x11] = (cpssp->mem_size[1] == 0) ? 1 : 2;

	spd_eeprom_init(cpssp, contents);
}

void *
memory_create(
	const char *name,
	const char *size,
	struct sig_manage *manage,
	struct sig_mem_bus *port_conn
)
{
	static const struct sig_manage_funcs manage_funcs = {
		.connect = memory_connect,
		.disconnect = memory_disconnect,
	};
	static const struct sig_cs_funcs funcs0 = {
		.read	= memory_0_read,
		.write	= memory_0_write,
		.map	= memory_0_map,
	};
	static const struct sig_cs_funcs funcs1 = {
		.read	= memory_1_read,
		.write	= memory_1_write,
		.map	= memory_1_map,
	};
	static const struct sig_boolean_funcs id0_funcs = {
		.set = memory_id0_set,
	};
	static const struct sig_boolean_funcs id1_funcs = {
		.set = memory_id1_set,
	};
	static const struct sig_boolean_funcs id2_funcs = {
		.set = memory_id2_set,
	};
	unsigned long size0;
	unsigned long size1;
	struct cpssp *cpssp;
	unsigned int i;

	if (size == NULL) {
		size0 = 32;
	} else {
		size0 = strtoul(size, NULL, 0);
	}
	if (size0 <= 128) {
		size1 = 0;
	} else {
		size0 /= 2;
		size1 = size0;
	}

	size0 *= 1024*1024;
	size1 *= 1024*1024;

	assert(size0 ==   1 * 1024*1024
	    || size0 ==   2 * 1024*1024
	    || size0 ==   4 * 1024*1024
	    || size0 ==   8 * 1024*1024
	    || size0 ==  16 * 1024*1024
	    || size0 ==  32 * 1024*1024
	    || size0 ==  64 * 1024*1024
	    || size0 == 128 * 1024*1024);
	assert(size1 == 0
	    || size1 == size0);

	cpssp = malloc(sizeof(*cpssp));
	assert(cpssp);

	cpssp->mem_size[0] = size0;
	cpssp->mem_size[1] = size1;

	cpssp->haddr[0] = shm_alloc(cpssp->mem_size[0], SHM_PAGE_ALIGNED);
	assert(cpssp->haddr[0]);
	cpssp->haddr[1] = shm_alloc(cpssp->mem_size[1], SHM_PAGE_ALIGNED);
	assert(cpssp->haddr[1]);

	cpssp->cs[0] = port_conn->cs0;
	cpssp->cs[1] = port_conn->cs1;

	sig_manage_connect(manage, cpssp, &manage_funcs);

	sig_cs_connect(cpssp->cs[0], cpssp, &funcs0);
	sig_cs_connect(cpssp->cs[1], cpssp, &funcs1);

	sig_boolean_connect_in(port_conn->id0, cpssp, &id0_funcs);
	sig_boolean_connect_in(port_conn->id1, cpssp, &id1_funcs);
	sig_boolean_connect_in(port_conn->id2, cpssp, &id2_funcs);

	for (i = 0; i < sizeof(cpssp->fault) / sizeof(cpssp->fault[0]); i++) {
		cpssp->fault[i].type = UNUSED;
	}

	memory_eeprom_init(cpssp, port_conn->i2cbus);

	return cpssp;
}

void
memory_destroy(void *_cpssp)
{
	struct cpssp *cpssp = _cpssp;

	shm_free(cpssp->haddr[0], cpssp->mem_size[0]);
	shm_free(cpssp->haddr[1], cpssp->mem_size[1]);

	free(cpssp);
}