1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/************************************************************************
************************************************************************
FAUST compiler
Copyright (C) 2003-2004 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
************************************************************************/
#include "seqSchema.h"
#include <iostream>
#include <assert.h>
using namespace std;
enum {kHorDir, kUpDir, kDownDir}; ///< directions of connections
static double computeHorzGap(schema* a, schema* b);
static int direction(const point& a, const point& b);
//----------------------------INTERFACE--------------------------------
/**
* Make a sequential schema. May add cables to ensure the internal
* connections are between the same number of outputs and inputs.
* Compute an horizontal gap based on the number of upward and
* downward connections.
*/
schema * makeSeqSchema (schema* s1, schema* s2)
{
unsigned int o = s1->outputs();
unsigned int i = s2->inputs();
schema* a = (o < i) ? makeParSchema(s1, makeCableSchema(i-o)) : s1;
schema* b = (o > i) ? makeParSchema(s2, makeCableSchema(o-i)) : s2;
return new seqSchema(a, b, computeHorzGap(a,b));
}
//-----------------------IMPLEMENTATION------------------------------
/**
* Constructor for a sequential schema (s1:s2). The components s1 and s2
* are supposed to be "compatible" (s1 : n->m and s2 : m->q)
*/
seqSchema::seqSchema (schema* s1, schema* s2, double hgap)
: schema( s1->inputs(),
s2->outputs(),
s1->width() + hgap + s2->width(),
max(s1->height(), s2->height()) ),
fSchema1(s1),
fSchema2(s2),
fHorzGap(hgap)
{
assert(s1->outputs() == s2->inputs());
}
//-----------------------placement------------------------------
/**
* Place the two components horizontally with enough space
* for the connections
*/
void seqSchema::place(double ox, double oy, int orientation)
{
beginPlace(ox, oy, orientation);
double y1 = max(0.0, 0.5*(fSchema2->height() - fSchema1->height()));
double y2 = max(0.0, 0.5*(fSchema1->height() - fSchema2->height()));
if (orientation == kLeftRight) {
fSchema1->place(ox, oy+y1, orientation);
fSchema2->place(ox+fSchema1->width()+fHorzGap, oy+y2, orientation);
} else {
fSchema2->place(ox, oy+y2, orientation);
fSchema1->place(ox+fSchema2->width()+fHorzGap, oy+y1, orientation);
}
endPlace();
}
/**
* The input points are the input points of the first component
*/
point seqSchema::inputPoint(unsigned int i) const
{
return fSchema1->inputPoint(i);
}
/**
* The output points are the output points of the second component
*/
point seqSchema::outputPoint(unsigned int i) const
{
return fSchema2->outputPoint(i);
}
//--------------------------drawing------------------------------
/**
* Draw the two components as well as the internal wires
*/
void seqSchema::draw(device& dev)
{
assert(placed());
assert(fSchema1->outputs() == fSchema2->inputs());
fSchema1->draw(dev);
fSchema2->draw(dev);
//drawInternalWires(dev);
}
/**
* Draw the two components as well as the internal wires
*/
void seqSchema::collectTraits(collector& c)
{
assert(placed());
assert(fSchema1->outputs() == fSchema2->inputs());
fSchema1->collectTraits(c);
fSchema2->collectTraits(c);
collectInternalWires(c);
}
/**
* Draw the internal wires aligning the vertical segments in
* a symetric way when possible.
*/
void seqSchema::drawInternalWires(device& dev)
{
assert (fSchema1->outputs() == fSchema2->inputs());
const int N = fSchema1->outputs();
double dx = 0;
double mx = 0;
int dir =-1;
if (orientation() == kLeftRight) {
// draw left right cables
for (int i=0; i<N; i++) {
point src = fSchema1->outputPoint(i);
point dst = fSchema2->inputPoint(i);
int d = direction(src,dst);
if (d != dir) {
// compute attributes of new direction
switch (d) {
case kUpDir : mx = 0; dx = dWire; break;
case kDownDir : mx = fHorzGap; dx = -dWire; break;
default : mx = 0; dx = 0; break;
}
dir = d;
} else {
// move in same direction
mx = mx +dx;
}
if (src.y == dst.y) {
// draw straight cable
dev.trait(src.x, src.y, dst.x, dst.y);
} else {
// draw zizag cable
dev.trait(src.x, src.y, src.x+mx, src.y);
dev.trait(src.x+mx, src.y, src.x+mx, dst.y);
dev.trait(src.x+mx, dst.y, dst.x, dst.y);
}
}
} else {
// draw right left cables
for (int i=0; i<N; i++) {
point src = fSchema1->outputPoint(i);
point dst = fSchema2->inputPoint(i);
int d = direction(src,dst);
if (d != dir) {
// compute attributes of new direction
switch (d) {
case kUpDir : mx = -fHorzGap; dx = dWire; break;
case kDownDir : mx = 0; dx = -dWire; break;
default : mx = 0; dx = 0; break;
}
dir = d;
} else {
// move in same direction
mx = mx +dx;
}
if (src.y == dst.y) {
// draw straight cable
dev.trait(src.x, src.y, dst.x, dst.y);
} else {
// draw zizag cable
dev.trait(src.x, src.y, src.x+mx, src.y);
dev.trait(src.x+mx, src.y, src.x+mx, dst.y);
dev.trait(src.x+mx, dst.y, dst.x, dst.y);
}
}
}
}
/**
* Draw the internal wires aligning the vertical segments in
* a symetric way when possible.
*/
void seqSchema::collectInternalWires(collector& c)
{
assert (fSchema1->outputs() == fSchema2->inputs());
const int N = fSchema1->outputs();
double dx = 0;
double mx = 0;
int dir =-1;
if (orientation() == kLeftRight) {
// draw left right cables
for (int i=0; i<N; i++) {
point src = fSchema1->outputPoint(i);
point dst = fSchema2->inputPoint(i);
int d = direction(src,dst);
if (d != dir) {
// compute attributes of new direction
switch (d) {
case kUpDir : mx = 0; dx = dWire; break;
case kDownDir : mx = fHorzGap; dx = -dWire; break;
default : mx = 0; dx = 0; break;
}
dir = d;
} else {
// move in same direction
mx = mx +dx;
}
if (src.y == dst.y) {
// draw straight cable
c.addTrait(trait(point(src.x, src.y), point(dst.x, dst.y)));
} else {
// draw zizag cable
c.addTrait(trait(point(src.x, src.y), point(src.x+mx, src.y)));
c.addTrait(trait(point(src.x+mx, src.y), point(src.x+mx, dst.y)));
c.addTrait(trait(point(src.x+mx, dst.y), point(dst.x, dst.y)));
}
}
} else {
// draw right left cables
for (int i=0; i<N; i++) {
point src = fSchema1->outputPoint(i);
point dst = fSchema2->inputPoint(i);
int d = direction(src,dst);
if (d != dir) {
// compute attributes of new direction
switch (d) {
case kUpDir : mx = -fHorzGap; dx = dWire; break;
case kDownDir : mx = 0; dx = -dWire; break;
default : mx = 0; dx = 0; break;
}
dir = d;
} else {
// move in same direction
mx = mx +dx;
}
if (src.y == dst.y) {
// draw straight cable
c.addTrait(trait(point(src.x, src.y), point(dst.x, dst.y)));
} else {
// draw zizag cable
c.addTrait(trait(point(src.x, src.y), point(src.x+mx, src.y)));
c.addTrait(trait(point(src.x+mx, src.y), point(src.x+mx, dst.y)));
c.addTrait(trait(point(src.x+mx, dst.y), point(dst.x, dst.y)));
}
}
}
}
//--------------------------helpers------------------------------
/**
* Compute the direction of a connection. Note that
* Y axis goes from top to bottom
*/
static int direction(const point& a, const point& b)
{
if (a.y > b.y) return kUpDir; // upward connections
if (a.y < b.y) return kDownDir; // downward connection
return kHorDir; // horizontal connections
}
/**
* Compute the horizontal gap needed to draw the internal wires.
* It depends on the largest group of connections that go in the same
* direction.
*/
static double computeHorzGap(schema* a, schema* b)
{
assert(a->outputs() == b->inputs());
if (a->outputs() == 0) {
return 0;
} else {
// store here the size of the largest group for each direction
int MaxGroupSize[3]; for(int i=0; i<3; i++) MaxGroupSize[i]=0;
// place a and b to have valid connection points
double ya = max(0.0, 0.5*(b->height() - a->height()));
double yb = max(0.0, 0.5*(a->height() - b->height()));
a->place(0,ya,kLeftRight);
b->place(0,yb,kLeftRight);
// init current group direction and size
int gdir = direction(a->outputPoint(0), b->inputPoint(0));
int gsize = 1;
// analyze direction of remaining points
for (unsigned int i=1; i<a->outputs(); i++) {
int d = direction(a->outputPoint(i), b->inputPoint(i));
if (d == gdir) {
gsize++;
} else {
if (gsize > MaxGroupSize[gdir]) MaxGroupSize[gdir]=gsize;
gsize = 1;
gdir = d;
}
}
// update for last group
if (gsize > MaxGroupSize[gdir]) MaxGroupSize[gdir]=gsize;
// the gap required for the connections
return dWire * max(MaxGroupSize[kUpDir],MaxGroupSize[kDownDir]);
}
}
|