1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
|
/************************************************************************
************************************************************************
FAUST compiler
Copyright (C) 2003-2004 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
************************************************************************/
/*****************************************************************************
HISTORY
22/01/05 : corrected bug on bool signals cached in float variables
*****************************************************************************/
#include "compile_scal.hh"
#include "timing.hh"
#include "compile.hh"
#include "sigtype.hh"
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <math.h>
#include "floats.hh"
#include "sigprint.hh"
#include "sigtyperules.hh"
#include "recursivness.hh"
#include "simplify.hh"
#include "privatise.hh"
#include "prim2.hh"
#include "xtended.hh"
#include "compatibility.hh"
#include "ppsig.hh"
#include "sigToGraph.hh"
using namespace std;
extern bool gDrawSignals;
extern bool gLessTempSwitch;
extern int gMaxCopyDelay;
extern string gClassName;
extern string gMasterDocument;
static Klass* signal2klass (const string& name, Tree sig)
{
Type t = getCertifiedSigType(sig); //, NULLENV);
if (t->nature() == kInt) {
ScalarCompiler C( new SigIntGenKlass(name) );
C.compileSingleSignal(sig);
return C.getClass();
} else {
ScalarCompiler C( new SigFloatGenKlass(name) );
C.compileSingleSignal(sig);
return C.getClass();
}
}
/*****************************************************************************
getFreshID
*****************************************************************************/
map<string, int> ScalarCompiler::fIDCounters;
string ScalarCompiler::getFreshID(const string& prefix)
{
if (fIDCounters.find(prefix) == fIDCounters.end()) {
fIDCounters[prefix]=0;
}
int n = fIDCounters[prefix];
fIDCounters[prefix] = n+1;
return subst("$0$1", prefix, T(n));
}
/*****************************************************************************
prepare
*****************************************************************************/
extern bool gDumpNorm;
Tree ScalarCompiler::prepare(Tree LS)
{
startTiming("ScalarCompiler::prepare");
startTiming("deBruijn2Sym");
Tree L1 = deBruijn2Sym(LS); // convert debruijn recursion into symbolic recursion
endTiming("deBruijn2Sym");
Tree L2 = simplify(L1); // simplify by executing every computable operation
Tree L3 = privatise(L2); // Un-share tables with multiple writers
// dump normal form
if (gDumpNorm) {
cout << ppsig(L3) << endl;
exit(0);
}
recursivnessAnnotation(L3); // Annotate L3 with recursivness information
startTiming("typeAnnotation");
typeAnnotation(L3); // Annotate L3 with type information
endTiming("typeAnnotation");
sharingAnalysis(L3); // annotate L3 with sharing count
fOccMarkup.mark(L3); // annotate L3 with occurences analysis
//annotationStatistics();
endTiming("ScalarCompiler::prepare");
if (gDrawSignals) {
ofstream dotfile(subst("$0-sig.dot", gMasterDocument).c_str());
sigToGraph(L3, dotfile);
}
return L3;
}
Tree ScalarCompiler::prepare2(Tree L0)
{
startTiming("ScalarCompiler::prepare2");
recursivnessAnnotation(L0); // Annotate L0 with recursivness information
typeAnnotation(L0); // Annotate L0 with type information
sharingAnalysis(L0); // annotate L0 with sharing count
fOccMarkup.mark(L0); // annotate L0 with occurences analysis
endTiming("ScalarCompiler::prepare2");
return L0;
}
/*****************************************************************************
compileMultiSignal
*****************************************************************************/
void ScalarCompiler::compileMultiSignal (Tree L)
{
//contextor recursivness(0);
L = prepare(L); // optimize, share and annotate expression
for (int i = 0; i < fClass->inputs(); i++) {
fClass->addZone3(subst("$1* input$0 = input[$0];", T(i), xfloat()));
}
for (int i = 0; i < fClass->outputs(); i++) {
fClass->addZone3(subst("$1* output$0 = output[$0];", T(i), xfloat()));
}
for (int i = 0; isList(L); L = tl(L), i++) {
Tree sig = hd(L);
fClass->addExecCode(subst("output$0[i] = $2$1;", T(i), CS(sig), xcast()));
}
generateUserInterfaceTree(prepareUserInterfaceTree(fUIRoot));
generateMacroInterfaceTree("", prepareUserInterfaceTree(fUIRoot));
if (fDescription) {
fDescription->ui(prepareUserInterfaceTree(fUIRoot));
}
}
/*****************************************************************************
compileSingleSignal
*****************************************************************************/
void ScalarCompiler::compileSingleSignal (Tree sig)
{
//contextor recursivness(0);
sig = prepare2(sig); // optimize and annotate expression
fClass->addExecCode(subst("output[i] = $0;", CS(sig)));
generateUserInterfaceTree(prepareUserInterfaceTree(fUIRoot));
generateMacroInterfaceTree("", prepareUserInterfaceTree(fUIRoot));
if (fDescription) {
fDescription->ui(prepareUserInterfaceTree(fUIRoot));
}
}
/*****************************************************************************
CS : compile a signal
*****************************************************************************/
/**
* Test if a signal is already compiled
* @param sig the signal expression to compile.
* @param name the string representing the compiled expression.
* @return true is already compiled
*/
bool ScalarCompiler::getCompiledExpression(Tree sig, string& cexp)
{
return fCompileProperty.get(sig, cexp);
}
/**
* Set the string of a compiled expression is already compiled
* @param sig the signal expression to compile.
* @param cexp the string representing the compiled expression.
* @return the cexp (for commodity)
*/
string ScalarCompiler::setCompiledExpression(Tree sig, const string& cexp)
{
//cerr << "ScalarCompiler::setCompiledExpression : " << cexp << " ==> " << ppsig(sig) << endl;
string old; if (fCompileProperty.get(sig, old) && (old != cexp)) {
cerr << "ERROR already a compiled expression attached : " << old << " replaced by " << cexp << endl;
exit(1);
}
fCompileProperty.set(sig, cexp);
return cexp;
}
/**
* Compile a signal
* @param sig the signal expression to compile.
* @return the C code translation of sig as a string
*/
string ScalarCompiler::CS (Tree sig)
{
//contextor contextRecursivness;
string code;
if (!getCompiledExpression(sig, code)) {
// not compiled yet
/* if (getRecursivness(sig) != contextRecursivness.get()) {
contextRecursivness.set(getRecursivness(sig));
}*/
code = generateCode(sig);
setCompiledExpression(sig, code);
}
return code;
}
/*****************************************************************************
generateCode : dispatch according to signal
*****************************************************************************/
/**
* Main code generator dispatch.
* @param sig the signal expression to compile.
* @return the C code translation of sig
*/
string ScalarCompiler::generateCode (Tree sig)
{
#if 0
fprintf(stderr, "CALL generateCode(");
printSignal(sig, stderr);
fprintf(stderr, ")\n");
#endif
int i;
double r;
Tree c, sel, x, y, z, label, id, ff, largs, type, name, file;
//printf("compilation of %p : ", sig); print(sig); printf("\n");
if ( getUserData(sig) ) { return generateXtended(sig); }
else if ( isSigInt(sig, &i) ) { return generateNumber(sig, T(i)); }
else if ( isSigReal(sig, &r) ) { return generateNumber(sig, T(r)); }
else if ( isSigInput(sig, &i) ) { return generateInput (sig, T(i)); }
else if ( isSigOutput(sig, &i, x) ) { return generateOutput (sig, T(i), CS(x));}
else if ( isSigFixDelay(sig, x, y) ) { return generateFixDelay (sig, x, y); }
else if ( isSigPrefix(sig, x, y) ) { return generatePrefix (sig, x, y); }
else if ( isSigIota(sig, x) ) { return generateIota (sig, x); }
else if ( isSigBinOp(sig, &i, x, y) ) { return generateBinOp (sig, i, x, y); }
else if ( isSigFFun(sig, ff, largs) ) { return generateFFun (sig, ff, largs); }
else if ( isSigFConst(sig, type, name, file) ) { return generateFConst(sig, tree2str(file), tree2str(name)); }
else if ( isSigFVar(sig, type, name, file) ) { return generateFVar(sig, tree2str(file), tree2str(name)); }
else if ( isSigTable(sig, id, x, y) ) { return generateTable (sig, x, y); }
else if ( isSigWRTbl(sig, id, x, y, z) ) { return generateWRTbl (sig, x, y, z); }
else if ( isSigRDTbl(sig, x, y) ) { return generateRDTbl (sig, x, y); }
else if ( isSigSelect2(sig, sel, x, y) ) { return generateSelect2 (sig, sel, x, y); }
else if ( isSigSelect3(sig, sel, x, y, z) ) { return generateSelect3 (sig, sel, x, y, z); }
else if ( isSigGen(sig, x) ) { return generateSigGen (sig, x); }
else if ( isProj(sig, &i, x) ) { return generateRecProj (sig, x, i); }
else if ( isSigIntCast(sig, x) ) { return generateIntCast (sig, x); }
else if ( isSigFloatCast(sig, x) ) { return generateFloatCast (sig, x); }
else if ( isSigButton(sig, label) ) { return generateButton (sig, label); }
else if ( isSigCheckbox(sig, label) ) { return generateCheckbox (sig, label); }
else if ( isSigVSlider(sig, label,c,x,y,z) ) { return generateVSlider (sig, label, c,x,y,z); }
else if ( isSigHSlider(sig, label,c,x,y,z) ) { return generateHSlider (sig, label, c,x,y,z); }
else if ( isSigNumEntry(sig, label,c,x,y,z) ) { return generateNumEntry (sig, label, c,x,y,z); }
else if ( isSigVBargraph(sig, label,x,y,z) ) { return generateVBargraph (sig, label, x, y, CS(z)); }
else if ( isSigHBargraph(sig, label,x,y,z) ) { return generateHBargraph (sig, label, x, y, CS(z)); }
else if ( isSigAttach(sig, x, y) ) { CS(y); return generateCacheCode(sig, CS(x)); }
else {
printf("Error in compiling signal, unrecognized signal : ");
print(sig);
printf("\n");
exit(1);
}
return "error in generate code";
}
/*****************************************************************************
NUMBERS
*****************************************************************************/
string ScalarCompiler::generateNumber (Tree sig, const string& exp)
{
string ctype, vname;
Occurences* o = fOccMarkup.retrieve(sig);
// check for number occuring in delays
if (o->getMaxDelay()>0) {
getTypedNames(getCertifiedSigType(sig), "Vec", ctype, vname);
generateDelayVec(sig, exp, ctype, vname, o->getMaxDelay());
}
return exp;
}
/*****************************************************************************
FOREIGN CONSTANTS
*****************************************************************************/
string ScalarCompiler::generateFConst (Tree sig, const string& file, const string& exp)
{
string ctype, vname;
Occurences* o = fOccMarkup.retrieve(sig);
addIncludeFile(file);
if (o->getMaxDelay()>0) {
getTypedNames(getCertifiedSigType(sig), "Vec", ctype, vname);
generateDelayVec(sig, exp, ctype, vname, o->getMaxDelay());
}
return exp;
}
/*****************************************************************************
FOREIGN VARIABLES
*****************************************************************************/
string ScalarCompiler::generateFVar (Tree sig, const string& file, const string& exp)
{
string ctype, vname;
addIncludeFile(file);
return generateCacheCode(sig, exp);
}
/*****************************************************************************
INPUTS - OUTPUTS
*****************************************************************************/
string ScalarCompiler::generateInput (Tree sig, const string& idx)
{
return generateCacheCode(sig, subst("$1input$0[i]", idx, icast()));
}
string ScalarCompiler::generateOutput (Tree sig, const string& idx, const string& arg)
{
string dst = subst("output$0[i]", idx);
fClass->addExecCode(subst("$0 = $2$1;", dst, arg, xcast()));
return dst;
}
/*****************************************************************************
BINARY OPERATION
*****************************************************************************/
string ScalarCompiler::generateBinOp(Tree sig, int opcode, Tree arg1, Tree arg2)
{
return generateCacheCode(sig, subst("($0 $1 $2)", CS(arg1), gBinOpTable[opcode]->fName, CS(arg2)));
}
/*****************************************************************************
Primitive Operations
*****************************************************************************/
string ScalarCompiler::generateFFun(Tree sig, Tree ff, Tree largs)
{
addIncludeFile(ffincfile(ff)); //printf("inc file %s\n", ffincfile(ff));
addLibrary(fflibfile(ff)); //printf("lib file %s\n", fflibfile(ff));
string code = ffname(ff);
code += '(';
string sep = "";
for (int i = 0; i< ffarity(ff); i++) {
code += sep;
code += CS(nth(largs, i));
sep = ", ";
}
code += ')';
return generateCacheCode(sig, code);
}
/*****************************************************************************
CACHE CODE
*****************************************************************************/
void ScalarCompiler::getTypedNames(Type t, const string& prefix, string& ctype, string& vname)
{
if (t->nature() == kInt) {
ctype = "int"; vname = subst("i$0", getFreshID(prefix));
} else {
ctype = ifloat(); vname = subst("f$0", getFreshID(prefix));
}
}
string ScalarCompiler::generateCacheCode(Tree sig, const string& exp)
{
string vname, ctype, code;
int sharing = getSharingCount(sig);
Occurences* o = fOccMarkup.retrieve(sig);
// check reentrance
if (getCompiledExpression(sig, code)) {
return code;
}
// check for expression occuring in delays
if (o->getMaxDelay()>0) {
getTypedNames(getCertifiedSigType(sig), "Vec", ctype, vname);
if (sharing>1) {
return generateDelayVec(sig, generateVariableStore(sig,exp), ctype, vname, o->getMaxDelay());
} else {
return generateDelayVec(sig, exp, ctype, vname, o->getMaxDelay());
}
} else if (sharing == 1) {
return exp;
} else if (sharing > 1) {
return generateVariableStore(sig, exp);
} else {
cerr << "Error in sharing count (" << sharing << ") for " << *sig << endl;
exit(1);
}
return "Error in generateCacheCode";
}
string ScalarCompiler::generateVariableStore(Tree sig, const string& exp)
{
string vname, ctype;
Type t = getCertifiedSigType(sig);
switch (t->variability()) {
case kKonst :
getTypedNames(t, "Const", ctype, vname);
fClass->addDeclCode(subst("$0 \t$1;", ctype, vname));
fClass->addInitCode(subst("$0 = $1;", vname, exp));
break;
case kBlock :
getTypedNames(t, "Slow", ctype, vname);
fClass->addFirstPrivateDecl(vname);
fClass->addZone2(subst("$0 \t$1 = $2;", ctype, vname, exp));
break;
case kSamp :
getTypedNames(t, "Temp", ctype, vname);
fClass->addExecCode(subst("$0 $1 = $2;", ctype, vname, exp));
break;
}
return vname;
}
/*****************************************************************************
CASTING
*****************************************************************************/
string ScalarCompiler::generateIntCast(Tree sig, Tree x)
{
return generateCacheCode(sig, subst("int($0)", CS(x)));
}
string ScalarCompiler::generateFloatCast (Tree sig, Tree x)
{
return generateCacheCode(sig, subst("$1($0)", CS(x), ifloat()));
}
/*****************************************************************************
user interface elements
*****************************************************************************/
string ScalarCompiler::generateButton(Tree sig, Tree path)
{
string varname = getFreshID("fbutton");
fClass->addDeclCode(subst("$1 \t$0;", varname, xfloat()));
fClass->addInitCode(subst("$0 = 0.0;", varname));
addUIWidget(reverse(tl(path)), uiWidget(hd(path), tree(varname), sig));
return generateCacheCode(sig, varname);
}
string ScalarCompiler::generateCheckbox(Tree sig, Tree path)
{
string varname = getFreshID("fcheckbox");
fClass->addDeclCode(subst("$1 \t$0;", varname, xfloat()));
fClass->addInitCode(subst("$0 = 0.0;", varname));
addUIWidget(reverse(tl(path)), uiWidget(hd(path), tree(varname), sig));
return generateCacheCode(sig, varname);
}
string ScalarCompiler::generateVSlider(Tree sig, Tree path, Tree cur, Tree min, Tree max, Tree step)
{
string varname = getFreshID("fslider");
fClass->addDeclCode(subst("$1 \t$0;", varname, xfloat()));
fClass->addInitCode(subst("$0 = $1;", varname, T(tree2float(cur))));
addUIWidget(reverse(tl(path)), uiWidget(hd(path), tree(varname), sig));
return generateCacheCode(sig, varname);
}
string ScalarCompiler::generateHSlider(Tree sig, Tree path, Tree cur, Tree min, Tree max, Tree step)
{
string varname = getFreshID("fslider");
fClass->addDeclCode(subst("$1 \t$0;", varname, xfloat()));
fClass->addInitCode(subst("$0 = $1;", varname, T(tree2float(cur))));
addUIWidget(reverse(tl(path)), uiWidget(hd(path), tree(varname), sig));
return generateCacheCode(sig, varname);
}
string ScalarCompiler::generateNumEntry(Tree sig, Tree path, Tree cur, Tree min, Tree max, Tree step)
{
string varname = getFreshID("fentry");
fClass->addDeclCode(subst("$1 \t$0;", varname, xfloat()));
fClass->addInitCode(subst("$0 = $1;", varname, T(tree2float(cur))));
addUIWidget(reverse(tl(path)), uiWidget(hd(path), tree(varname), sig));
return generateCacheCode(sig, varname);
}
string ScalarCompiler::generateVBargraph(Tree sig, Tree path, Tree min, Tree max, const string& exp)
{
string varname = getFreshID("fbargraph");
fClass->addDeclCode(subst("$1 \t$0;", varname, xfloat()));
addUIWidget(reverse(tl(path)), uiWidget(hd(path), tree(varname), sig));
Type t = getCertifiedSigType(sig);
switch (t->variability()) {
case kKonst :
fClass->addInitCode(subst("$0 = $1;", varname, exp));
break;
case kBlock :
fClass->addZone2(subst("$0 = $1;", varname, exp));
break;
case kSamp :
fClass->addExecCode(subst("$0 = $1;", varname, exp));
break;
}
//return varname;
return generateCacheCode(sig, varname);
}
string ScalarCompiler::generateHBargraph(Tree sig, Tree path, Tree min, Tree max, const string& exp)
{
string varname = getFreshID("fbargraph");
fClass->addDeclCode(subst("$1 \t$0;", varname, xfloat()));
addUIWidget(reverse(tl(path)), uiWidget(hd(path), tree(varname), sig));
Type t = getCertifiedSigType(sig);
switch (t->variability()) {
case kKonst :
fClass->addInitCode(subst("$0 = $1;", varname, exp));
break;
case kBlock :
fClass->addZone2(subst("$0 = $1;", varname, exp));
break;
case kSamp :
fClass->addExecCode(subst("$0 = $1;", varname, exp));
break;
}
//return varname;
return generateCacheCode(sig, varname);
}
/*****************************************************************************
TABLES
*****************************************************************************/
/*----------------------------------------------------------------------------
sigGen : initial table content
----------------------------------------------------------------------------*/
string ScalarCompiler::generateSigGen(Tree sig, Tree content)
{
string klassname = getFreshID("SIG");
string signame = getFreshID("sig");
fClass->addSubKlass(signal2klass(klassname, content));
fClass->addInitCode(subst("$0 $1;", klassname, signame));
fInstanceInitProperty.set(content, pair<string,string>(klassname,signame));
return signame;
}
string ScalarCompiler::generateStaticSigGen(Tree sig, Tree content)
{
string klassname = getFreshID("SIG");
string signame = getFreshID("sig");
fClass->addSubKlass(signal2klass(klassname, content));
fClass->addStaticInitCode(subst("$0 $1;", klassname, signame));
fStaticInitProperty.set(content, pair<string,string>(klassname,signame));
return signame;
}
/*----------------------------------------------------------------------------
sigTable : table declaration
----------------------------------------------------------------------------*/
string ScalarCompiler::generateTable(Tree sig, Tree tsize, Tree content)
{
string generator(CS(content));
Tree g;
string cexp;
string ctype, vname;
int size;
// already compiled but check if we need to add declarations
assert ( isSigGen(content, g) );
pair<string,string> kvnames;
if ( ! fInstanceInitProperty.get(g, kvnames)) {
// not declared here, we add a declaration
bool b = fStaticInitProperty.get(g, kvnames);
assert(b);
fClass->addInitCode(subst("$0 $1;", kvnames.first, kvnames.second));
}
if (!isSigInt(tsize, &size)) {
//fprintf(stderr, "error in ScalarCompiler::generateTable()\n"); exit(1);
cerr << "error in ScalarCompiler::generateTable() : "
<< *tsize
<< " is not a constant integer table size expression "
<< endl;
exit(1);
}
// definition du nom et du type de la table
// A REVOIR !!!!!!!!!
Type t = getCertifiedSigType(content);//, tEnv);
if (t->nature() == kInt) {
vname = getFreshID("itbl");
ctype = "int";
} else {
vname = getFreshID("ftbl");
ctype = ifloat();
}
// declaration de la table
fClass->addDeclCode(subst("$0 \t$1[$2];", ctype, vname, T(size)));
// initialisation du generateur de contenu
fClass->addInitCode(subst("$0.init(samplingFreq);", generator));
// remplissage de la table
fClass->addInitCode(subst("$0.fill($1,$2);", generator, T(size), vname));
// on retourne le nom de la table
return vname;
}
string ScalarCompiler::generateStaticTable(Tree sig, Tree tsize, Tree content)
{
//string generator(CS(content));
Tree g;
string cexp;
string ctype, vname;
int size;
assert ( isSigGen(content, g) );
if (!getCompiledExpression(content, cexp)) {
cexp = setCompiledExpression(content, generateStaticSigGen(content, g));
} else {
// already compiled but check if we need to add declarations
pair<string,string> kvnames;
if ( ! fStaticInitProperty.get(g, kvnames)) {
// not declared here, we add a declaration
bool b = fInstanceInitProperty.get(g, kvnames);
assert(b);
fClass->addStaticInitCode(subst("$0 $1;", kvnames.first, kvnames.second));
}
}
if (!isSigInt(tsize, &size)) {
//fprintf(stderr, "error in ScalarCompiler::generateTable()\n"); exit(1);
cerr << "error in ScalarCompiler::generateTable() : "
<< *tsize
<< " is not a constant integer table size expression "
<< endl;
exit(1);
}
// definition du nom et du type de la table
// A REVOIR !!!!!!!!!
Type t = getCertifiedSigType(content);//, tEnv);
if (t->nature() == kInt) {
vname = getFreshID("itbl");
ctype = "int";
} else {
vname = getFreshID("ftbl");
ctype = ifloat();
}
// declaration de la table
fClass->addDeclCode(subst("static $0 \t$1[$2];", ctype, vname, T(size)));
fClass->addStaticFields(subst("$0 \t$1::$2[$3];", ctype, fClass->getClassName(), vname, T(size) ));
// initialisation du generateur de contenu
fClass->addStaticInitCode(subst("$0.init(samplingFreq);", cexp));
// remplissage de la table
fClass->addStaticInitCode(subst("$0.fill($1,$2);", cexp, T(size), vname));
// on retourne le nom de la table
return vname;
}
/*----------------------------------------------------------------------------
sigWRTable : table assignement
----------------------------------------------------------------------------*/
string ScalarCompiler::generateWRTbl(Tree sig, Tree tbl, Tree idx, Tree data)
{
string tblName(CS(tbl));
fClass->addExecCode(subst("$0[$1] = $2;", tblName, CS(idx), CS(data)));
return tblName;
}
/*----------------------------------------------------------------------------
sigRDTable : table access
----------------------------------------------------------------------------*/
string ScalarCompiler::generateRDTbl(Tree sig, Tree tbl, Tree idx)
{
// YO le 21/04/05 : La lecture des tables n'�ait pas mise dans le cache
// et donc le code �ait dupliqu�(dans tester.dsp par exemple)
//return subst("$0[$1]", CS(tEnv, tbl), CS(tEnv, idx));
//cerr << "generateRDTable " << *sig << endl;
// test the special case of a read only table that can be compiled
// has a static member
Tree id, size, content;
if( isSigTable(tbl, id, size, content) ) {
string tblname;
if (!getCompiledExpression(tbl, tblname)) {
tblname = setCompiledExpression(tbl, generateStaticTable(tbl, size, content));
}
return generateCacheCode(sig, subst("$0[$1]", tblname, CS(idx)));
} else {
return generateCacheCode(sig, subst("$0[$1]", CS(tbl), CS(idx)));
}
}
/*****************************************************************************
RECURSIONS
*****************************************************************************/
/**
* Generate code for a projection of a group of mutually recursive definitions
*/
string ScalarCompiler::generateRecProj(Tree sig, Tree r, int i)
{
string vname;
Tree var, le;
if ( ! getVectorNameProperty(sig, vname)) {
assert(isRec(r, var, le));
generateRec(r, var, le);
assert(getVectorNameProperty(sig, vname));
}
return "[[UNUSED EXP]]"; // make sure the resulting expression is never used in the generated code
}
/**
* Generate code for a group of mutually recursive definitions
*/
void ScalarCompiler::generateRec(Tree sig, Tree var, Tree le)
{
int N = len(le);
vector<bool> used(N);
vector<int> delay(N);
vector<string> vname(N);
vector<string> ctype(N);
// prepare each element of a recursive definition
for (int i=0; i<N; i++) {
Tree e = sigProj(i,sig); // recreate each recursive definition
if (fOccMarkup.retrieve(e)) {
// this projection is used
used[i] = true;
getTypedNames(getCertifiedSigType(e), "Rec", ctype[i], vname[i]);
setVectorNameProperty(e, vname[i]);
delay[i] = fOccMarkup.retrieve(e)->getMaxDelay();
} else {
// this projection is not used therefore
// we should not generate code for it
used[i] = false;
}
}
// generate delayline for each element of a recursive definition
for (int i=0; i<N; i++) {
if (used[i]) {
generateDelayLine(ctype[i], vname[i], delay[i], CS(nth(le,i)));
}
}
}
/*****************************************************************************
PREFIX, DELAY A PREFIX VALUE
*****************************************************************************/
string ScalarCompiler::generatePrefix (Tree sig, Tree x, Tree e)
{
Type te = getCertifiedSigType(sig);//, tEnv);
string vperm = getFreshID("M");
string vtemp = getFreshID("T");
string type = cType(te);
fClass->addDeclCode(subst("$0 \t$1;", type, vperm));
fClass->addInitCode(subst("$0 = $1;", vperm, CS(x)));
fClass->addExecCode(subst("$0 $1 = $2;", type, vtemp, vperm));
fClass->addExecCode(subst("$0 = $1;", vperm, CS(e)));
return vtemp;
}
/*****************************************************************************
IOTA(n)
*****************************************************************************/
static bool isPowerOf2(int n)
{
return !(n & (n - 1));
}
string ScalarCompiler::generateIota (Tree sig, Tree n)
{
int size;
if (!isSigInt(n, &size)) { fprintf(stderr, "error in generateIota\n"); exit(1); }
string vperm = getFreshID("iota");
fClass->addDeclCode(subst("int \t$0;", vperm));
fClass->addInitCode(subst("$0 = 0;", vperm));
if (isPowerOf2(size)) {
fClass->addExecCode(subst("$0 = ($0+1)&$1;", vperm, T(size-1)));
} else {
fClass->addExecCode(subst("if (++$0 == $1) $0=0;", vperm, T(size)));
}
return vperm;
}
// a revoir en utilisant la lecture de table et en partageant la construction de la paire de valeurs
/**
* Generate a select2 code
*/
string ScalarCompiler::generateSelect2 (Tree sig, Tree sel, Tree s1, Tree s2)
{
return generateCacheCode(sig, subst( "(($0)?$1:$2)", CS(sel), CS(s2), CS(s1) ) );
}
/**
* Generate a select3 code (using if-then-else)
* ((int n = sel==0)? s0 : ((sel==1)? s1 : s2))
* int nn; ((nn=sel) ? ((nn==1)? s1 : s2) : s0);
*/
string ScalarCompiler::generateSelect3 (Tree sig, Tree sel, Tree s1, Tree s2, Tree s3)
{
return generateCacheCode(sig, subst( "(($0==0)? $1 : (($0==1)?$2:$3) )", CS(sel), CS(s1), CS(s2), CS(s3) ) );
}
#if 0
string ScalarCompiler::generateSelect3 (Tree sig, Tree sel, Tree s1, Tree s2, Tree s3)
{
Type t = getCertifiedSigType(sig);
Type t1 = getCertifiedSigType(s1);
Type t2 = getCertifiedSigType(s2);
Type t3 = getCertifiedSigType(s3);
Type w = min(t1,min(t2,t3));
string type = cType(t);
string var = getFreshID("S");
switch (w->variability())
{
case kKonst :
fClass->addDeclCode(subst("$0 \t$1[3];", type, var));
break;
case kBlock :
//fClass->addLocalDecl(type, subst("$0[3]", var));
//fClass->addLocalVecDecl(type, var, 3);
fClass->addSharedDecl(var);
fClass->addZone1(subst("$0 \t$1[3];", type, var));
break;
case kSamp :
fClass->addExecCode(subst("$0 \t$1[3];", type, var));
break;
}
switch (t1->variability())
{
case kKonst :
fClass->addInitCode(subst("$0[0] = $1;", var, CS(s1)));
break;
case kBlock :
fClass->addZone2b(subst("$0[0] = $1;", var, CS(s1)));
break;
case kSamp :
fClass->addExecCode(subst("$0[0] = $1;", var, CS(s1)));
break;
}
switch (t2->variability())
{
case kKonst :
fClass->addInitCode(subst("$0[1] = $1;", var, CS(s2)));
break;
case kBlock :
fClass->addZone2b(subst("$0[1] = $1;", var, CS(s2)));
break;
case kSamp :
fClass->addExecCode(subst("$0[1] = $1;", var, CS(s2)));
break;
}
switch (t3->variability())
{
case kKonst :
fClass->addInitCode(subst("$0[2] = $1;", var, CS(s3)));
break;
case kBlock :
fClass->addZone2b(subst("$0[2] = $1;", var, CS(s3)));
break;
case kSamp :
fClass->addExecCode(subst("$0[2] = $1;", var, CS(s3)));
break;
}
return generateCacheCode(sig, subst("$0[$1]", var, CS(sel)));
}
#endif
/**
* retrieve the type annotation of sig
* @param sig the signal we want to know the type
*/
string ScalarCompiler::generateXtended (Tree sig)
{
xtended* p = (xtended*) getUserData(sig);
vector<string> args;
vector<Type> types;
for (int i=0; i<sig->arity(); i++) {
args.push_back(CS(sig->branch(i)));
types.push_back(getCertifiedSigType(sig->branch(i)));
}
if (p->needCache()) {
return generateCacheCode(sig, p->generateCode(fClass, args, types));
} else {
return p->generateCode(fClass, args, types);
}
}
//------------------------------------------------------------------------------------------------
/*****************************************************************************
vector name property
*****************************************************************************/
/**
* Set the vector name property of a signal, the name of the vector used to
* store the previous values of the signal to implement a delay.
* @param sig the signal expression.
* @param vecname the string representing the vector name.
* @return true is already compiled
*/
void ScalarCompiler::setVectorNameProperty(Tree sig, const string& vecname)
{
fVectorProperty.set(sig, vecname);
}
/**
* Get the vector name property of a signal, the name of the vector used to
* store the previous values of the signal to implement a delay.
* @param sig the signal expression.
* @param vecname the string where to store the vector name.
* @return true if the signal has this property, false otherwise
*/
bool ScalarCompiler::getVectorNameProperty(Tree sig, string& vecname)
{
return fVectorProperty.get(sig, vecname);
}
/**
* Compute the minimal power of 2 greater than x
*/
int ScalarCompiler::pow2limit(int x)
{
int n = 2;
while (n < x) { n = 2*n; }
return n;
}
/*****************************************************************************
N-SAMPLE FIXED DELAY : sig = exp@delay
case 1-sample max delay :
Y(t-0) Y(t-1)
Temp Var gLessTempSwitch = false
V[0] V[1] gLessTempSwitch = true
case max delay < gMaxCopyDelay :
Y(t-0) Y(t-1) Y(t-2) ...
Temp V[0] V[1] ... gLessTempSwitch = false
V[0] V[1] V[2] ... gLessTempSwitch = true
case max delay >= gMaxCopyDelay :
Y(t-0) Y(t-1) Y(t-2) ...
Temp V[0] V[1] ...
V[0] V[1] V[2] ...
*****************************************************************************/
/**
* Generate code for accessing a delayed signal. The generated code depend of
* the maximum delay attached to exp and the gLessTempSwitch.
*/
string ScalarCompiler::generateFixDelay (Tree sig, Tree exp, Tree delay)
{
int mxd, d;
string vecname;
//cerr << "ScalarCompiler::generateFixDelay sig = " << *sig << endl;
//cerr << "ScalarCompiler::generateFixDelay exp = " << *exp << endl;
//cerr << "ScalarCompiler::generateFixDelay del = " << *delay << endl;
CS(exp); // ensure exp is compiled to have a vector name
mxd = fOccMarkup.retrieve(exp)->getMaxDelay();
if (! getVectorNameProperty(exp, vecname)) {
cerr << "No vector name for : " << ppsig(exp) << endl;
assert(0);
}
if (mxd == 0) {
// not a real vector name but a scalar name
return vecname;
} else if (mxd < gMaxCopyDelay) {
if (isSigInt(delay, &d)) {
return subst("$0[$1]", vecname, CS(delay));
} else {
return generateCacheCode(sig, subst("$0[$1]", vecname, CS(delay)));
}
} else {
// long delay : we use a ring buffer of size 2^x
int N = pow2limit( mxd+1 );
return generateCacheCode(sig, subst("$0[(IOTA-$1)&$2]", vecname, CS(delay), T(N-1)));
}
}
/**
* Generate code for the delay mecchanism. The generated code depend of the
* maximum delay attached to exp and the "less temporaries" switch
*/
string ScalarCompiler::generateDelayVec(Tree sig, const string& exp, const string& ctype, const string& vname, int mxd)
{
string s = generateDelayVecNoTemp(sig, exp, ctype, vname, mxd);
if (getCertifiedSigType(sig)->variability() < kSamp) {
return exp;
} else {
return s;
}
}
/**
* Generate code for the delay mecchanism without using temporary variables
*/
string ScalarCompiler::generateDelayVecNoTemp(Tree sig, const string& exp, const string& ctype, const string& vname, int mxd)
{
assert(mxd > 0);
//bool odocc = fOccMarkup.retrieve(sig)->hasOutDelayOccurences();
if (mxd < gMaxCopyDelay) {
// short delay : we copy
fClass->addDeclCode(subst("$0 \t$1[$2];", ctype, vname, T(mxd+1)));
fClass->addInitCode(subst("for (int i=0; i<$1; i++) $0[i] = 0;", vname, T(mxd+1)));
fClass->addExecCode(subst("$0[0] = $1;", vname, exp));
// generate post processing copy code to update delay values
if (mxd == 1) {
fClass->addPostCode(subst("$0[1] = $0[0];", vname));
} else if (mxd == 2) {
//fClass->addPostCode(subst("$0[2] = $0[1];", vname));
fClass->addPostCode(subst("$0[2] = $0[1]; $0[1] = $0[0];", vname));
} else {
fClass->addPostCode(subst("for (int i=$0; i>0; i--) $1[i] = $1[i-1];", T(mxd), vname));
}
setVectorNameProperty(sig, vname);
return subst("$0[0]", vname);
} else {
// generate code for a long delay : we use a ring buffer of size N = 2**x > mxd
int N = pow2limit(mxd+1);
// we need a iota index
ensureIotaCode();
// declare and init
fClass->addDeclCode(subst("$0 \t$1[$2];", ctype, vname, T(N)));
fClass->addInitCode(subst("for (int i=0; i<$1; i++) $0[i] = 0;", vname, T(N)));
// execute
fClass->addExecCode(subst("$0[IOTA&$1] = $2;", vname, T(N-1), exp));
setVectorNameProperty(sig, vname);
return subst("$0[IOTA&$1]", vname, T(N-1));
}
}
/**
* Generate code for the delay mecchanism without using temporary variables
*/
void ScalarCompiler::generateDelayLine(const string& ctype, const string& vname, int mxd, const string& exp)
{
//assert(mxd > 0);
if (mxd == 0) {
// cerr << "MXD==0 : " << vname << " := " << exp << endl;
// no need for a real vector
fClass->addExecCode(subst("$0 \t$1 = $2;", ctype, vname, exp));
} else if (mxd < gMaxCopyDelay) {
// cerr << "small delay : " << vname << "[" << mxd << "]" << endl;
// short delay : we copy
fClass->addDeclCode(subst("$0 \t$1[$2];", ctype, vname, T(mxd+1)));
fClass->addInitCode(subst("for (int i=0; i<$1; i++) $0[i] = 0;", vname, T(mxd+1)));
fClass->addExecCode(subst("$0[0] = $1;", vname, exp));
// generate post processing copy code to update delay values
if (mxd == 1) {
fClass->addPostCode(subst("$0[1] = $0[0];", vname));
} else if (mxd == 2) {
fClass->addPostCode(subst("$0[2] = $0[1]; $0[1] = $0[0];", vname));
} else {
fClass->addPostCode(subst("for (int i=$0; i>0; i--) $1[i] = $1[i-1];", T(mxd), vname));
}
} else {
// generate code for a long delay : we use a ring buffer of size N = 2**x > mxd
int N = pow2limit(mxd+1);
// we need a iota index
ensureIotaCode();
// declare and init
fClass->addDeclCode(subst("$0 \t$1[$2];", ctype, vname, T(N)));
fClass->addInitCode(subst("for (int i=0; i<$1; i++) $0[i] = 0;", vname, T(N)));
// execute
fClass->addExecCode(subst("$0[IOTA&$1] = $2;", vname, T(N-1), exp));
}
}
/**
* Generate code for a unique IOTA variable increased at each sample
* and used to index ring buffers.
*/
void ScalarCompiler::ensureIotaCode()
{
if (!fHasIota) {
fHasIota = true;
fClass->addDeclCode("int \tIOTA;");
fClass->addInitCode("IOTA = 0;");
fClass->addPostCode("IOTA = IOTA+1;");
}
}
|