1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
/************************************************************************
************************************************************************
FAUST compiler
Copyright (C) 2003-2004 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
************************************************************************/
#include "compile_sched.hh"
#include "floats.hh"
#include "ppsig.hh"
extern int gVecSize;
void SchedulerCompiler::compileMultiSignal (Tree L)
{
//contextor recursivness(0);
L = prepare(L); // optimize, share and annotate expression
for (int i = 0; i < fClass->inputs(); i++) {
fClass->addZone3(subst("$1* input$0 = &input[$0][fIndex];", T(i), xfloat()));
}
for (int i = 0; i < fClass->outputs(); i++) {
fClass->addZone3(subst("$1* output$0 = &output[$0][fIndex];", T(i), xfloat()));
}
fClass->addSharedDecl("fullcount");
fClass->addSharedDecl("input");
fClass->addSharedDecl("output");
for (int i = 0; isList(L); L = tl(L), i++) {
Tree sig = hd(L);
fClass->openLoop("count");
fClass->addExecCode(subst("output$0[i] = $2$1;", T(i), CS(sig), xcast()));
fClass->closeLoop(sig);
}
// Build tasks list
fClass->buildTasksList();
generateUserInterfaceTree(prepareUserInterfaceTree(fUIRoot));
generateMacroInterfaceTree("", prepareUserInterfaceTree(fUIRoot));
if (fDescription) {
fDescription->ui(prepareUserInterfaceTree(fUIRoot));
}
}
/**
* Generate the code for a (short) delay line
* @param k the c++ class where the delay line will be placed.
* @param l the loop where the code will be placed.
* @param tname the name of the C++ type (float or int)
* @param dlname the name of the delay line (vector) to be used.
* @param delay the maximum delay
* @param cexp the content of the signal as a C++ expression
*/
void SchedulerCompiler::vectorLoop (const string& tname, const string& vecname, const string& cexp)
{
// -- declare the vector
fClass->addSharedDecl(vecname);
// -- variables moved as class fields...
fClass->addDeclCode(subst("$0 \t$1[$2];", tname, vecname, T(gVecSize)));
// -- compute the new samples
fClass->addExecCode(subst("$0[i] = $1;", vecname, cexp));
}
/**
* Generate the code for a (short) delay line
* @param k the c++ class where the delay line will be placed.
* @param l the loop where the code will be placed.
* @param tname the name of the C++ type (float or int)
* @param dlname the name of the delay line (vector) to be used.
* @param delay the maximum delay
* @param cexp the content of the signal as a C++ expression
*/
void SchedulerCompiler::dlineLoop (const string& tname, const string& dlname, int delay, const string& cexp)
{
if (delay < gMaxCopyDelay) {
// Implementation of a copy based delayline
// create names for temporary and permanent storage
string buf = subst("$0_tmp", dlname);
string pmem= subst("$0_perm", dlname);
// constraints delay size to be multiple of 4
delay = (delay+3)&-4;
// allocate permanent storage for delayed samples
string dsize = T(delay);
fClass->addDeclCode(subst("$0 \t$1[$2];", tname, pmem, dsize));
// init permanent memory
fClass->addInitCode(subst("for (int i=0; i<$1; i++) $0[i]=0;", pmem, dsize));
// compute method
// -- declare a buffer and a "shifted" vector
fClass->addSharedDecl(buf);
// -- variables moved as class fields...
fClass->addDeclCode(subst("$0 \t$1[$2+$3];", tname, buf, T(gVecSize), dsize));
fClass->addFirstPrivateDecl(dlname);
fClass->addZone2(subst("$0* \t$1 = &$2[$3];", tname, dlname, buf, dsize));
// -- copy the stored samples to the delay line
fClass->addPreCode(subst("for (int i=0; i<$2; i++) $0[i]=$1[i];", buf, pmem, dsize));
// -- compute the new samples
fClass->addExecCode(subst("$0[i] = $1;", dlname, cexp));
// -- copy back to stored samples
fClass->addPostCode(subst("for (int i=0; i<$2; i++) $0[i]=$1[count+i];", pmem, buf, dsize));
} else {
// Implementation of a ring-buffer delayline
// the size should be large enough and aligned on a power of two
delay = pow2limit(delay + gVecSize);
string dsize = T(delay);
string mask = T(delay-1);
// create names for temporary and permanent storage
string idx = subst("$0_idx", dlname);
string idx_save = subst("$0_idx_save", dlname);
// allocate permanent storage for delayed samples
fClass->addDeclCode(subst("$0 \t$1[$2];", tname, dlname, dsize));
fClass->addDeclCode(subst("int \t$0;", idx));
fClass->addDeclCode(subst("int \t$0;", idx_save));
// init permanent memory
fClass->addInitCode(subst("for (int i=0; i<$1; i++) $0[i]=0;", dlname, dsize));
fClass->addInitCode(subst("$0 = 0;", idx));
fClass->addInitCode(subst("$0 = 0;", idx_save));
// -- update index
fClass->addPreCode(subst("$0 = ($0+$1)&$2;", idx, idx_save, mask));
// -- compute the new samples
fClass->addExecCode(subst("$0[($2+i)&$3] = $1;", dlname, cexp, idx, mask));
// -- save index
fClass->addPostCode(subst("$0 = count;", idx_save));
}
}
|