File: compile_vect.cpp

package info (click to toggle)
faust 0.9.46-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 15,256 kB
  • ctags: 9,961
  • sloc: cpp: 47,746; sh: 2,254; ansic: 1,503; makefile: 1,211; ruby: 950; yacc: 468; objc: 459; lex: 200; xml: 177
file content (522 lines) | stat: -rw-r--r-- 17,774 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/************************************************************************
 ************************************************************************
    FAUST compiler
	Copyright (C) 2003-2004 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/



#include "compile_vect.hh"
#include "floats.hh"
#include "ppsig.hh"

extern int gVecSize;

void VectorCompiler::compileMultiSignal (Tree L)
{
    //contextor recursivness(0);
    L = prepare(L);     // optimize, share and annotate expression

    for (int i = 0; i < fClass->inputs(); i++) {
        fClass->addZone3(subst("$1* input$0 = &input[$0][index];", T(i), xfloat()));
    }
    for (int i = 0; i < fClass->outputs(); i++) {
        fClass->addZone3(subst("$1* output$0 = &output[$0][index];", T(i), xfloat()));
    }

    fClass->addSharedDecl("fullcount");
    fClass->addSharedDecl("input");
    fClass->addSharedDecl("output");

    for (int i = 0; isList(L); L = tl(L), i++) {
        Tree sig = hd(L);
        fClass->openLoop("count");
        fClass->addExecCode(subst("output$0[i] = $2$1;", T(i), CS(sig), xcast()));
        fClass->closeLoop(sig);
    }

    generateUserInterfaceTree(prepareUserInterfaceTree(fUIRoot));
 	generateMacroInterfaceTree("", prepareUserInterfaceTree(fUIRoot));
    if (fDescription) {
        fDescription->ui(prepareUserInterfaceTree(fUIRoot));
    }
}


/**
 * Compile a signal
 * @param sig the signal expression to compile.
 * @return the C code translation of sig as a string
 */
string  VectorCompiler::CS (Tree sig)
{
    string      code;
    //cerr << "ENTER VectorCompiler::CS : "<< ppsig(sig) << endl;
    if (!getCompiledExpression(sig, code)) {
        code = generateCode(sig);
		//cerr << "CS : " << code << " for " << ppsig(sig) << endl;
        setCompiledExpression(sig, code);
    } else {
        // we require an already compiled expression
        // therefore we must update the dependencies of
        // the current loop
        int     i;
        Tree	x, d, r;
        Loop*   ls;
        Loop*   tl = fClass->topLoop();

        if (fClass->getLoopProperty(sig,ls)) {
            // sig has a loop property
            //cerr << "CASE SH : fBackwardLoopDependencies.insert : " << tl << " --depend(A)son--> " << ls << endl;
			tl->fBackwardLoopDependencies.insert(ls);

        } else if (isSigFixDelay(sig, x, d) && fClass->getLoopProperty(x,ls)) {
            //cerr << "CASE DL : fBackwardLoopDependencies.insert : " << tl << " --depend(B)son--> " << ls << endl;
            tl->fBackwardLoopDependencies.insert(ls);

        } else if (isSigFixDelay(sig, x, d) && isProj(x, &i, r) && fClass->getLoopProperty(r,ls)) {
            //cerr << "CASE DR : fBackwardLoopDependencies.insert : " << tl << " --depend(B)son--> " << ls << endl;
            tl->fBackwardLoopDependencies.insert(ls);

        } else if (isProj(sig, &i, r) && fClass->getLoopProperty(r,ls)) {
            //cerr << "CASE R* : fBackwardLoopDependencies.insert : " << tl << " --depend(B)son--> " << ls << endl;
            tl->fBackwardLoopDependencies.insert(ls);

        } else {
            if (isProj(sig, &i, r)) {
                //cerr << "SYMBOL RECURSIF EN COURS ??? " << *r << endl;
            } else if (getCertifiedSigType(sig)->variability()<kSamp) {
                //cerr << "SLOW EXPRESSION " << endl;
            } else {
                //cerr << "Expression absorbée" << *sig << endl;
            }

        }
    }
    //cerr << "EXIT VectorCompiler::CS : "<< ppsig(sig) << "---code---> " << code << endl;
	return code;
}

string VectorCompiler::generateCode (Tree sig)
{
    generateCodeRecursions(sig);
    return generateCodeNonRec(sig);
}

void VectorCompiler::generateCodeRecursions (Tree sig)
{
    Tree    id, body;
    string  code;
    //cerr << "VectorCompiler::generateCodeRecursions( " << ppsig(sig) << " )" << endl;
    if (getCompiledExpression(sig, code)) {
        //cerr << "** ALREADY VISITED : " << code << " ===> " << ppsig(sig) << endl;
        return;
    } else if( isRec(sig, id, body) ) {
        //cerr << "we have a recursive expression non compiled yet : " << ppsig(sig) << endl;
        setCompiledExpression(sig, "[RecursionVisited]");
        fClass->openLoop(sig, "count");
        generateRec(sig, id, body);
        fClass->closeLoop(sig);
    } else {
        // we go down the expression
        vector<Tree>  subsigs;
        int n = getSubSignals(sig, subsigs, false);
        for (int i=0; i<n; i++) { generateCodeRecursions(subsigs[i]); }
    }
}

string VectorCompiler::generateCodeNonRec (Tree sig)
{
    string  code;
    if (getCompiledExpression(sig, code)) {
        // already visited
        return code;
    } else {
        //cerr << "VectorCompiler::generateCodeNonRec( " << ppsig(sig) << " )" << endl;
        code = generateLoopCode(sig);
        setCompiledExpression(sig, code);
        return code;
    }
}

/**
 * Compile a signal
 * @param sig the signal expression to compile.
 * @return the C code translation of sig as a string
 */
string VectorCompiler::generateLoopCode (Tree sig)
{
    int     i;
    Tree    x;
    Loop*   l;

    l = fClass->topLoop();
    assert(l);
    //cerr << "VectorCompiler::OLDgenerateCode " << ppsig(sig) << endl;
    if (needSeparateLoop(sig)) {
        // we need a separate loop unless it's an old recursion
        if (isProj(sig, &i, x)) {
            // projection of a recursive group x
            if (l->hasRecDependencyIn(singleton(x))) {
                // x is already in the loop stack
                return ScalarCompiler::generateCode(sig);
            } else {
                // x must be defined
                fClass->openLoop(x, "count");
                string c = ScalarCompiler::generateCode(sig);
                fClass->closeLoop(sig);
                return c;
            }
        } else {
            fClass->openLoop("count");
            string c = ScalarCompiler::generateCode(sig);
            fClass->closeLoop(sig);
            return c;
        }
    } else {
        return ScalarCompiler::generateCode(sig);
    }
}


/**
 * Generate cache code for a signal if needed
 * @param sig the signal expression.
 * @param exp the corresponding C code.
 * @return the cached C code
 */
string VectorCompiler::generateCacheCode(Tree sig, const string& exp)
{
    string      vname, ctype;
    int         sharing = getSharingCount(sig);
    Type        t = getCertifiedSigType(sig);
    Occurences* o = fOccMarkup.retrieve(sig);
    int         d = o->getMaxDelay();

    if (t->variability() < kSamp) {
        if (d==0) {
            // non-sample, not delayed : same as scalar cache
            return ScalarCompiler::generateCacheCode(sig,exp);

        } else {
            // it is a non-sample expressions but used delayed
            // we need a delay line
			getTypedNames(getCertifiedSigType(sig), "Vec", ctype, vname);
            if ((sharing > 1) && !verySimple(sig)) {
                // first cache this expression because it
                // it is shared and complex
                string cachedexp =  generateVariableStore(sig, exp);
                generateDelayLine(ctype, vname, d, cachedexp);
                setVectorNameProperty(sig, vname);
                return cachedexp;
            } else {
                // no need to cache this expression because
                // it is either not shared or very simple
                generateDelayLine(ctype, vname, d, exp);
                setVectorNameProperty(sig, vname);
                return exp;
            }
        }
    } else {
        // sample-rate signal
        if (d > 0) {
            // used delayed : we need a delay line
            getTypedNames(getCertifiedSigType(sig), "Yec", ctype, vname);
            generateDelayLine(ctype, vname, d, exp);
            setVectorNameProperty(sig, vname);

            if (verySimple(sig)) {
                return exp;
            } else {
                if (d < gMaxCopyDelay) {
                    return subst("$0[i]", vname);
                } else {
                    // we use a ring buffer
                    string mask = T(pow2limit(d + gVecSize)-1);
                    return subst("$0[($0_idx+i) & $1]", vname, mask);
                }
            }
        } else {
            // not delayed
            if ( sharing > 1 && ! verySimple(sig) ) {
                // shared and not simple : we need a vector
                // cerr << "ZEC : " << ppsig(sig) << endl;
                getTypedNames(getCertifiedSigType(sig), "Zec", ctype, vname);
                generateDelayLine(ctype, vname, d, exp);
                setVectorNameProperty(sig, vname);
                return subst("$0[i]", vname);
           } else {
                // not shared or simple : no cache needed
                return exp;
            }
        }
    }
}

/**
 * Test if a signal need to be compiled in a separate loop.
 * @param sig the signal expression to test.
 * @return true if a separate loop is needed
 */
bool VectorCompiler::needSeparateLoop(Tree sig)
{
    Occurences* o = fOccMarkup.retrieve(sig);
    Type        t = getCertifiedSigType(sig);
    int         c = getSharingCount(sig);
    bool        b;

    int         i;
    Tree        x,y;


    if (o->getMaxDelay()>0) {
        //cerr << "DLY "; // delayed expressions require a separate loop
        b = true;
    } else if (verySimple(sig) || t->variability()<kSamp) {
        b = false;      // non sample computation never require a loop
    } else if (isSigFixDelay(sig, x, y)) {
        b = false;      //
    } else if (isProj(sig, &i ,x)) {
        //cerr << "REC "; // recursive expressions require a separate loop
        b = true;
    } else if (c > 1) {
        //cerr << "SHA(" << c << ") "; // expressions used several times required a separate loop
        b = true;
    } else {
        // sample expressions that are not recursive, not delayed
        // and not shared, doesn't require a separate loop.
        b = false;
    }
/*    if (b) {
        cerr << "Separate Loop for " << ppsig(sig) << endl;
    } else {
        cerr << "Same Loop for " << ppsig(sig) << endl;
    }*/
    return b;
}

void VectorCompiler::generateDelayLine(const string& ctype, const string& vname, int mxd, const string& exp)
{
    if (mxd == 0) {
        vectorLoop(ctype, vname, exp);
    } else {
        dlineLoop(ctype, vname, mxd, exp);
    }
}

string VectorCompiler::generateVariableStore(Tree sig, const string& exp)
{
    Type        t = getCertifiedSigType(sig);

    if (getCertifiedSigType(sig)->variability() == kSamp) {
        string      vname, ctype;
        getTypedNames(t, "Vector", ctype, vname);
        vectorLoop(ctype, vname, exp);
        return subst("$0[i]", vname);
    } else {
        return ScalarCompiler::generateVariableStore(sig, exp);
    }
}


/**
 * Generate code for accessing a delayed signal. The generated code depend of
 * the maximum delay attached to exp and the gLessTempSwitch.
 */

string VectorCompiler::generateFixDelay (Tree sig, Tree exp, Tree delay)
{
    int     mxd, d;
    string  vecname;

    //cerr << "VectorCompiler::generateFixDelay " << ppsig(sig) << endl;

    CS(exp); // ensure exp is compiled to have a vector name

    mxd = fOccMarkup.retrieve(exp)->getMaxDelay();

    if (! getVectorNameProperty(exp, vecname)) {
        cerr << "ERROR no vector name for " << ppsig(exp) << endl;
        exit(1);
    }

    if (mxd == 0) {
        // not a real vector name but a scalar name
        return subst("$0[i]", vecname);

    } else if (mxd < gMaxCopyDelay){
        if (isSigInt(delay, &d)) {
            if (d == 0) {
                return subst("$0[i]", vecname);
            } else {
                return subst("$0[i-$1]", vecname, T(d));
            }
        } else {
            return subst("$0[i-$1]", vecname, CS(delay));
        }

    } else {

        // long delay : we use a ring buffer of size 2^x
        int     N   = pow2limit( mxd+gVecSize );

        if (isSigInt(delay, &d)) {
            if (d == 0) {
                return subst("$0[($0_idx+i)&$1]", vecname, T(N-1));
            } else {
                return subst("$0[($0_idx+i-$2)&$1]", vecname, T(N-1), T(d));
            }
        } else {
            return subst("$0[($0_idx+i-$2)&$1]", vecname, T(N-1), CS(delay));
        }
    }
}


/**
 * Generate code for the delay mecchanism. The generated code depend of the
 * maximum delay attached to exp and the "less temporaries" switch
 */

string VectorCompiler::generateDelayVec(Tree sig, const string& exp, const string& ctype, const string& vname, int mxd)
{
    // it is a non-sample but used delayed
    // we need a delay line
    generateDelayLine(ctype, vname, mxd, exp);
    setVectorNameProperty(sig, vname);
    if (verySimple(sig)) {
        return exp;
    } else {
        return subst("$0[i]", vname);
    }
}

#if 0
static int pow2limit(int x)
{
    int n = 2;
    while (n < x) { n = 2*n; }
    return n;
}
#endif

/**
 * Generate the code for a (short) delay line
 * @param k the c++ class where the delay line will be placed.
 * @param l the loop where the code will be placed.
 * @param tname the name of the C++ type (float or int)
 * @param dlname the name of the delay line (vector) to be used.
 * @param delay the maximum delay
 * @param cexp the content of the signal as a C++ expression
 */
void  VectorCompiler::vectorLoop (const string& tname, const string& vecname, const string& cexp)
{
    // -- declare the vector
    fClass->addSharedDecl(vecname);

    // -- variables moved as class fields...
    fClass->addZone1(subst("$0 \t$1[$2];", tname, vecname, T(gVecSize)));

    // -- compute the new samples
    fClass->addExecCode(subst("$0[i] = $1;", vecname, cexp));
}


/**
 * Generate the code for a (short) delay line
 * @param k the c++ class where the delay line will be placed.
 * @param l the loop where the code will be placed.
 * @param tname the name of the C++ type (float or int)
 * @param dlname the name of the delay line (vector) to be used.
 * @param delay the maximum delay
 * @param cexp the content of the signal as a C++ expression
 */
void  VectorCompiler::dlineLoop (const string& tname, const string& dlname, int delay, const string& cexp)
{
    if (delay < gMaxCopyDelay) {

        // Implementation of a copy based delayline

	    // create names for temporary and permanent storage
	    string  buf = subst("$0_tmp", dlname);
        string  pmem= subst("$0_perm", dlname);

        // constraints delay size to be multiple of 4
        delay = (delay+3)&-4;

        // allocate permanent storage for delayed samples
        string  dsize   = T(delay);
        fClass->addDeclCode(subst("$0 \t$1[$2];", tname, pmem, dsize));

        // init permanent memory
        fClass->addInitCode(subst("for (int i=0; i<$1; i++) $0[i]=0;", pmem, dsize));

        // compute method

        // -- declare a buffer and a "shifted" vector
        fClass->addSharedDecl(buf);

        // -- variables moved as class fields...
        fClass->addZone1(subst("$0 \t$1[$2+$3];", tname, buf, T(gVecSize), dsize));

        fClass->addFirstPrivateDecl(dlname);
        fClass->addZone2(subst("$0* \t$1 = &$2[$3];", tname, dlname, buf, dsize));

        // -- copy the stored samples to the delay line
        fClass->addPreCode(subst("for (int i=0; i<$2; i++) $0[i]=$1[i];", buf, pmem, dsize));

        // -- compute the new samples
        fClass->addExecCode(subst("$0[i] = $1;", dlname, cexp));

        // -- copy back to stored samples
        fClass->addPostCode(subst("for (int i=0; i<$2; i++) $0[i]=$1[count+i];", pmem, buf, dsize));

    } else {

        // Implementation of a ring-buffer delayline

        // the size should be large enough and aligned on a power of two
        delay   = pow2limit(delay + gVecSize);
        string  dsize   = T(delay);
        string  mask    = T(delay-1);

        // create names for temporary and permanent storage
        string  idx = subst("$0_idx", dlname);
        string  idx_save = subst("$0_idx_save", dlname);

        // allocate permanent storage for delayed samples
        fClass->addDeclCode(subst("$0 \t$1[$2];", tname, dlname, dsize));
        fClass->addDeclCode(subst("int \t$0;", idx));
        fClass->addDeclCode(subst("int \t$0;", idx_save));

        // init permanent memory
        fClass->addInitCode(subst("for (int i=0; i<$1; i++) $0[i]=0;", dlname, dsize));
        fClass->addInitCode(subst("$0 = 0;", idx));
        fClass->addInitCode(subst("$0 = 0;", idx_save));

        // -- update index
        fClass->addPreCode(subst("$0 = ($0+$1)&$2;", idx, idx_save, mask));

        // -- compute the new samples
        fClass->addExecCode(subst("$0[($2+i)&$3] = $1;", dlname, cexp, idx, mask));

        // -- save index
        fClass->addPostCode(subst("$0 = count;", idx_save));
    }
}