1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
#include "aterm.hh"
#include "ppsig.hh"
//static void collectMulTerms (Tree& coef, map<Tree,int>& M, Tree t, bool invflag=false);
#undef TRACE
using namespace std;
typedef map<Tree,mterm> SM;
aterm::aterm ()
{}
/**
* create a aterm from a tree expression
*/
aterm::aterm (Tree t)
{
#ifdef TRACE
cerr << "aterm::aterm (" << ppsig(t)<< ")" << endl;
#endif
*this += t;
#ifdef TRACE
cerr << "aterm::aterm (" << ppsig(t)<< ") : -> " << *this << endl;
#endif
}
/**
* Add two terms trying to simplify the result
*/
static Tree simplifyingAdd(Tree t1, Tree t2)
{
assert(t1!=0);
assert(t2!=0);
if (isNum(t1) && isNum(t2)) {
return addNums(t1,t2);
} else if (isZero(t1)) {
return t2;
} else if (isZero(t2)) {
return t1;
} else if (t1 <= t2) {
return sigAdd(t1, t2);
} else {
return sigAdd(t2, t1);
}
}
/**
* return the corresponding normalized expression tree
*/
Tree aterm::normalizedTree() const
{
// store positive and negative tems by order and sign
// positive terms are stored in P[]
// negative terms are inverted (made positive) and stored in N[]
Tree P[4], N[4];
// prepare
for (int order = 0; order < 4; order++) P[order] = N[order] = tree(0);
// sum by order and sign
for (SM::const_iterator p = fSig2MTerms.begin(); p != fSig2MTerms.end(); p++) {
const mterm& m = p->second;
if (m.isNegative()) {
Tree t = m.normalizedTree(false, true);
int order = getSigOrder(t);
N[order] = simplifyingAdd(N[order],t);
} else {
Tree t = m.normalizedTree();
int order = getSigOrder(t);
P[order] = simplifyingAdd(P[order],t);
}
}
// combine sums
Tree SUM = tree(0);
for (int order = 0; order < 4; order++) {
if (!isZero(P[order])) {
SUM = simplifyingAdd(SUM,P[order]);
}
if (!isZero(N[order])) { // we have to substract
if (isZero(SUM) && (order < 3)) {
// we postpone substraction
N[order+1] = simplifyingAdd(N[order], N[order+1]);
} else {
SUM = sigSub(SUM, N[order]);
}
}
}
assert(SUM);
return SUM;
}
/**
* print an aterm in a human readable format
*/
ostream& aterm::print(ostream& dst) const
{
if (fSig2MTerms.empty()) {
dst << "AZERO";
} else {
const char* sep = "";
for (SM::const_iterator p = fSig2MTerms.begin(); p != fSig2MTerms.end(); p++) {
dst << sep << p->second;
sep = " + ";
}
}
return dst;
}
/**
* Add in place an additive expression tree Go down t recursively looking
* for additions and substractions
*/
const aterm& aterm::operator += (Tree t)
{
int op;
Tree x,y;
assert(t!=0);
if (isSigBinOp(t, &op, x, y) && (op == kAdd)) {
*this += x;
*this += y;
} else if (isSigBinOp(t, &op, x, y) && (op == kSub)) {
*this += x;
*this -= y;
} else {
mterm m(t);
*this += m;
}
return *this;
}
/**
* Substract in place an additive expression tree Go down t recursively looking
* for additions and substractions
*/
const aterm& aterm::operator -= (Tree t)
{
int op;
Tree x,y;
assert(t!=0);
if (isSigBinOp(t, &op, x, y) && (op == kAdd)) {
*this -= x;
*this -= y;
} else if (isSigBinOp(t, &op, x, y) && (op == kSub)) {
*this -= x;
*this += y;
} else {
mterm m(t);
*this -= m;
}
return *this;
}
/**
* Add in place an mterm
*/
const aterm& aterm::operator += (const mterm& m)
{
#ifdef TRACE
cerr << *this << " aterm::+= " << m << endl;
#endif
Tree sig = m.signatureTree();
#ifdef TRACE
cerr << "signature " << *sig << endl;
#endif
SM::const_iterator p = fSig2MTerms.find(sig);
if (p == fSig2MTerms.end()) {
// its a new mterm
fSig2MTerms.insert(make_pair(sig,m));
} else {
fSig2MTerms[sig] += m;
}
return *this;
}
/**
* Substract in place an mterm
*/
const aterm& aterm::operator -= (const mterm& m)
{
//cerr << *this << " aterm::-= " << m << endl;
Tree sig = m.signatureTree();
//cerr << "signature " << *sig << endl;
SM::const_iterator p = fSig2MTerms.find(sig);
if (p == fSig2MTerms.end()) {
// its a new mterm
fSig2MTerms.insert(make_pair(sig,m*mterm(-1)));
} else {
fSig2MTerms[sig] -= m;
}
return *this;
}
mterm aterm::greatestDivisor() const
{
int maxComplexity = 0;
mterm maxGCD(1);
for (SM::const_iterator p1 = fSig2MTerms.begin(); p1 != fSig2MTerms.end(); p1++) {
for (SM::const_iterator p2 = p1; p2 != fSig2MTerms.end(); p2++) {
if (p2 != p1) {
mterm g = gcd(p1->second,p2->second);
if (g.complexity()>maxComplexity) {
maxComplexity = g.complexity();
maxGCD = g;
}
}
}
}
//cerr << "greatestDivisor of " << *this << " is " << maxGCD << endl;
return maxGCD;
}
/**
* reorganize the aterm by factorizing d
*/
aterm aterm::factorize(const mterm& d)
{
//cerr << "factorize : " << *this << " with " << d << endl;
aterm A;
aterm Q;
// separate the multiple of m from the others
for (SM::const_iterator p1 = fSig2MTerms.begin(); p1 != fSig2MTerms.end(); p1++) {
mterm t = p1->second;
if (t.hasDivisor(d)) {
mterm q = t/d;
//cerr << "q = " << q << endl;
Q += q;
//cerr << "step Q = " << Q << endl;
} else {
A += t;
//cerr << "step A = " << A << endl;
}
}
// combines the two parts
//cerr << "d.normalizedTree() " << ppsig(d.normalizedTree()) << endl;
//cerr << "Q.normalizedTree() " << ppsig(Q.normalizedTree()) << endl;
//Tree tt = sigMul(d.normalizedTree(), Q.normalizedTree());
//cerr << "tt " << *tt << endl;
//Tree ttt = sigAdd(
A += sigMul(d.normalizedTree(), Q.normalizedTree());
//cerr << "Final A = " << A << endl;
//cerr << "Final Tree " << *(A.normalizedTree()) << endl;
return A;
}
|