File: simplify.cpp

package info (click to toggle)
faust 0.9.46-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 15,256 kB
  • ctags: 9,961
  • sloc: cpp: 47,746; sh: 2,254; ansic: 1,503; makefile: 1,211; ruby: 950; yacc: 468; objc: 459; lex: 200; xml: 177
file content (379 lines) | stat: -rw-r--r-- 9,918 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/************************************************************************
 ************************************************************************
    FAUST compiler
	Copyright (C) 2003-2004 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/



#include <stdio.h>
#include <assert.h>
#include "list.hh"
#include "signals.hh"
#include "sigtype.hh"
#include "recursivness.hh"
#include "sigtyperules.hh"
#include "sigorderrules.hh"
#include "sigprint.hh"
#include "ppsig.hh"
#include "simplify.hh"
#include "num.hh"
#include "xtended.hh"
#include <map>
#include "compatibility.hh"

#include "normalize.hh"

#undef TRACE

// declarations
Tree SIMPLIFIED = tree(symbol("sigSimplifiedProp"));
//static Tree binequiv (Tree sig, int opnum, Tree a, Tree b);
static Tree simplification (Tree sig);
static Tree sigMap (Tree key, tfun f, Tree t);

static Tree traced_simplification(Tree sig)
{
	assert(sig);
#ifdef TRACE
    cerr << ++TABBER << "Start simplification of : " << ppsig(sig) << endl;
	/*
	fprintf(stderr, "\nStart simplification of : ");
	printSignal(sig, stderr);
	fprintf(stderr, "\n");
	*/
#endif
	Tree r = simplification(sig);
	assert(r!=0);
#ifdef TRACE
    cerr << --TABBER << "Simplification of : " << ppsig(sig) << " Returns : " << ppsig(r) << endl;
	/*
	fprintf(stderr, "Simplification of : ");
	printSignal(sig, stderr);
	fprintf(stderr, " -> ");
	printSignal(r, stderr);
	fprintf(stderr, "\n");
	*/
#endif
	return r;
}

Tree simplify (Tree sig)
{
	return sigMap(SIMPLIFIED, traced_simplification, sig);
}


// Implementation

static Tree simplification (Tree sig)
{
	assert(sig);
	int		opnum;
	Tree	t1, t2, t3, t4;

	xtended* xt = (xtended*) getUserData(sig);
	// primitive elements
	if (xt)
	{
		//return 3;
		vector<Tree> args;
		for (int i=0; i<sig->arity(); i++) { args.push_back( sig->branch(i) ); }

        // to avoid negative power to further normalization
        if (xt != gPowPrim) {
            return xt->computeSigOutput(args);
        } else {
            return normalizeAddTerm(xt->computeSigOutput(args));
        }

	} else if (isSigBinOp(sig, &opnum, t1, t2)) {

		BinOp* op = gBinOpTable[opnum];

		Node n1 = t1->node();
		Node n2 = t2->node();

		if (isNum(n1) && isNum(n2)) 		return tree(op->compute(n1,n2));

		else if (op->isLeftNeutral(n1)) 	return t2;

		else if (op->isRightNeutral(n2)) 	return t1;

		else 								return normalizeAddTerm(sig);

	} else if (isSigDelay1(sig, t1)) {

		return normalizeDelay1Term (t1);

	} else if (isSigFixDelay(sig, t1, t2)) {

		return normalizeFixedDelayTerm (t1, t2);

	} else if (isSigIntCast(sig, t1)) {

		Tree 	tx;
		int		i;
		double 	x;
		Node 	n1 = t1->node();

		if (isInt(n1, &i)) 			return t1;
		if (isDouble(n1, &x)) 		return tree(int(x));
		if (isSigIntCast(t1, tx)) 	return t1;

		return sig;

	} else if (isSigFloatCast(sig, t1)) {

		Tree 	tx;
		int		i;
		double 	x;
		Node 	n1 = t1->node();

		if (isInt(n1, &i)) 				return tree(double(i));
		if (isDouble(n1, &x)) 			return t1;
		if (isSigFloatCast(t1, tx)) 	return t1;

		return sig;

     } else if (isSigSelect2(sig, t1, t2, t3)){

        Node n1 = t1->node();

        if (isZero(n1)) return t2;
        if (isNum(n1))  return t3;

        if (t2==t3) return t2;

        return sig;

    } else if (isSigSelect3(sig, t1, t2, t3, t4)){

        Node n1 = t1->node();

        if (isZero(n1)) return t2;
        if (isOne(n1))  return t3;
        if (isNum(n1))  return t4;

        if (t3==t4) return simplification(sigSelect2(t1,t2,t3));

        return sig;

	} else {

		return sig;
	}
}

/**
 * Recursively transform a graph by applying a function f.
 * map(f, foo[t1..tn]) = f(foo[map(f,t1)..map(f,tn)])
 */
static Tree sigMap (Tree key, tfun f, Tree t)
{
    //printf("start sigMap\n");
    Tree p,id,body;

    if (getProperty(t, key, p)) {

        return (isNil(p)) ? t : p;	// truc pour eviter les boucles

    } else if (isRec(t, id, body)) {

        setProperty(t, key, nil);	// avoid infinite loop
        return rec(id, sigMap(key, f, body));

    } else {

        Tree r1=nil;
        switch (t->arity()) {

            case 0 :
                r1 = t;
                break;
            case 1 :
                r1 = tree(t->node(), sigMap(key,f,t->branch(0)));
                break;
            case 2 :
                r1 = tree(t->node(), sigMap(key,f,t->branch(0)), sigMap(key,f,t->branch(1)));
                break;
            case 3 :
                r1 = tree(t->node(), sigMap(key,f,t->branch(0)), sigMap(key,f,t->branch(1)),
                                           sigMap(key,f,t->branch(2)));
                break;
            case 4 :
                r1 = tree(t->node(), sigMap(key,f,t->branch(0)), sigMap(key,f,t->branch(1)),
                                           sigMap(key,f,t->branch(2)), sigMap(key,f,t->branch(3)));
                break;
        }
        Tree r2 = f(r1);
        if (r2 == t) {
            setProperty(t, key, nil);
        } else {
            setProperty(t, key, r2);
        }
        return r2;
    }
}





/**
 * Like SigMap, recursively transform a graph by applying a
 * function f. But here recursive trees are also renamed.
 * map(f, foo[t1..tn]) = f(foo[map(f,t1)..map(f,tn)])
 */
static Tree sigMapRename (Tree key, Tree env, tfun f, Tree t)
{
    //printf("start sigMap\n");
    Tree p,id,body;

    if (getProperty(t, key, p)) {

        return (isNil(p)) ? t : p;	// truc pour eviter les boucles

    } else if (isRec(t, id, body)) {

        assert(isRef(t,id)); // controle temporaire

        Tree id2;
        if (searchEnv(id, id2, env)) {
            // déjà en cours de visite de cette recursion
            return ref(id2);
        } else {
            // premiere visite de cette recursion
            id2 = tree(Node(unique("renamed")));
            Tree body2 = sigMapRename(key, pushEnv(id, id2, env), f, body);
            return rec(id2,body2);
        }

    } else {

        Tree r1=nil;
        switch (t->arity()) {

            case 0 :
                r1 = t;
                break;
            case 1 :
                r1 = tree(t->node(),    sigMapRename(key,env,f,t->branch(0)));
                break;
            case 2 :
                r1 = tree(t->node(),    sigMapRename(key,env,f,t->branch(0)),
                                        sigMapRename(key,env,f,t->branch(1)));
                break;
            case 3 :
                r1 = tree(t->node(),    sigMapRename(key,env,f,t->branch(0)),
                                        sigMapRename(key,env,f,t->branch(1)),
                                        sigMapRename(key,env,f,t->branch(2)));
                break;
            case 4 :
                r1 = tree(t->node(),    sigMapRename(key,env,f,t->branch(0)),
                                        sigMapRename(key,env,f,t->branch(1)),
                                        sigMapRename(key,env,f,t->branch(2)),
                                        sigMapRename(key,env,f,t->branch(3)));
                break;
        }
        Tree r2 = f(r1);
        if (r2 == t) {
            setProperty(t, key, nil);
        } else {
            setProperty(t, key, r2);
        }
        return r2;
    }
}

#if 0
static void eraseProperties (Tree key, Tree t)
{
	//printf("start sigMap\n");
	Tree p,id,body;

	if (getProperty(t, key, p)) {
		// already erased, nothing to do

	} else if (isRec(t, id, body)) {
		t->clearProperties();
        Tree r=rec(id, body);
        assert(r==t);
		setProperty(t, key, nil);	// avoid infinite loop
		eraseProperties(key, body);

	} else {

		for (int i=0; i<t->arity(); i++) {
			eraseProperties(key,t->branch(i));
		}
	}
}

void eraseAllProperties(Tree t)
{
    cerr << "begin eraseAllProperties" << endl;
	eraseProperties(tree(Node(unique("erase_"))), t);
    cerr << "end eraseAllProperties" << endl;
}
#endif

/**
 * Converts regular tables into doc tables in order to
 * facilitate the mathematical documentation generation
 */

Tree DOCTABLES = tree(symbol("DocTablesProp"));

static Tree docTableConverter (Tree sig);

static Tree NULLENV = tree(symbol("NullRenameEnv"));

Tree docTableConvertion (Tree sig)
{
    Tree r  = sigMapRename(DOCTABLES, NULLENV, docTableConverter, sig);
    return r;
}


// Implementation

static Tree docTableConverter (Tree sig)
{
    Tree tbl, tbl2, id, id2, size, igen, isig, ridx, widx, wsig;

    if (isSigRDTbl(sig, tbl, ridx)) {
        // we are in a table to convert
        if (isSigTable(tbl, id, size, igen)) {
            // it's a read only table
            assert(isSigGen(igen, isig));
            return sigDocAccessTbl(sigDocConstantTbl(size,isig),ridx);
        } else {
            // it's a read write table
            assert(isSigWRTbl(tbl,id,tbl2,widx,wsig));
            assert(isSigTable(tbl2, id2, size, igen));
            assert(isSigGen(igen, isig));

            return sigDocAccessTbl(sigDocWriteTbl(size,isig,widx,wsig),ridx);
        }

    } else {
        // nothing to convert
        return sig;
    }
}