1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
#include <set>
#include "graphSorting.hh"
/**
* Set the order of a loop and place it to appropriate set
*/
static void setOrder(Loop* l, int order, lgraph& V)
{
assert(l);
V.resize(order+1);
if (l->fOrder >= 0) { V[l->fOrder].erase(l); }
l->fOrder = order; V[order].insert(l);
}
/**
* Set the order of T1's loops and collect there sons into T2
*/
static void setLevel(int order, const lset& T1, lset& T2, lgraph& V)
{
for (lset::const_iterator p = T1.begin(); p!=T1.end(); p++) {
setOrder(*p, order, V);
T2.insert((*p)->fBackwardLoopDependencies.begin(), (*p)->fBackwardLoopDependencies.end());
}
}
static void resetOrder(Loop* l)
{
l->fOrder = -1;
for (lset::const_iterator p = l->fBackwardLoopDependencies.begin(); p!=l->fBackwardLoopDependencies.end(); p++) {
resetOrder(*p);
}
}
/**
* Topological sort of an acyclic graph of loops. The loops
* are collect in an lgraph : a vector of sets of loops
*/
void sortGraph(Loop* root, lgraph& V)
{
lset T1, T2;
int level;
assert(root);
resetOrder(root);
T1.insert(root); level=0; V.clear();
do {
setLevel(level, T1, T2, V);
T1=T2; T2.clear(); level++;
} while (T1.size()>0);
// Erase empty levels
lgraph::iterator p = V.begin();
while (p != V.end()) {
if ((*p).size() == 1 && (*(*p).begin())->isEmpty()) {
p = V.erase(p);
} else {
p++;
}
}
}
|