File: patternmatcher.cpp

package info (click to toggle)
faust 0.9.46-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 15,256 kB
  • ctags: 9,961
  • sloc: cpp: 47,746; sh: 2,254; ansic: 1,503; makefile: 1,211; ruby: 950; yacc: 468; objc: 459; lex: 200; xml: 177
file content (729 lines) | stat: -rw-r--r-- 20,449 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729

/* compiler/patternmatcher/patternmatcher.cpp: implementation of the Faust
   rewriting engine */

#include "tlib.hh"
#include "list.hh"
#include "boxes.hh"
#include "ppbox.hh"
#include "eval.hh"
#include "patternmatcher.hh"

using namespace std;
#include <vector>
#include <list>
#include <set>
#include <utility>

/* Uncomment for debugging output. */
//#define DEBUG

/* Additional Tree deconstruction operations. */

/* Check for cons (nonempty list) nodes. */

static inline bool isCons(Tree x, Tree& h, Tree& t)
{
  if (isList(x)) {
    h = hd(x); t = tl(x);
    return true;
  } else
    return false;
}

/* Deconstruct a (BDA) op pattern (YO). */

static inline bool isBoxPatternOp(Tree box, Node& n, Tree& t1, Tree& t2)
{
    if (    isBoxPar(box, t1, t2) ||
            isBoxSeq(box, t1, t2) ||
            isBoxSplit(box, t1, t2) ||
            isBoxMerge(box, t1, t2) ||
            isBoxHGroup(box, t1, t2) ||
            isBoxVGroup(box, t1, t2) ||
            isBoxTGroup(box, t1, t2) ||
            isBoxRec(box, t1, t2)    )
    {
        n = box->node();
        return true;
    } else {
        return false;
    }
}

/* TA data structures. */

/* subterm paths */

typedef vector<int> Path;

/* Subterm at given path in given term tree. */

static Tree subtree(Tree X, int i, const Path& p)
{
  int n = p.size();
  Node op(0);
  Tree x0, x1;
  if (i < n && isBoxPatternOp(X, op, x0, x1))
    return subtree((p[i]==0)?x0:x1, i+1, p);
  else
    return X;
}

/* rule markers */

struct Rule {
  int r; // rule number
  Tree id; // matched variable (NULL if none)
  Path p; // subterm path indicating where variable value is found

  Rule(int _r, Tree _id) : r(_r), id(_id), p(Path()) {}
  Rule(int _r, Tree _id, const Path& _p) : r(_r), id(_id), p(_p) {}
  Rule(const Rule& rule) : r(rule.r), id(rule.id), p(rule.p) {}

  Rule& operator = (const Rule& rule)
  { r = rule.r; id = rule.id; p = rule.p; return *this; }

  bool operator == (const Rule& rule) const
  { return r == rule.r; }
  bool operator < (const Rule& rule) const
  { return r < rule.r; }

#ifdef DEBUG
  ostream& print(ostream& fout) const;
#endif
};

struct State;

/* transitions */

struct Trans {
  Tree x; // symbol or constant (NULL for variable)
  Node n; // operator symbol (if arity>0)
  int arity; // symbol arity
  State *state; // successor state

  Trans(Tree _x);
  Trans(const Node& _n, int _arity);
  Trans(const Trans& trans);
  ~Trans();

  Trans& operator = (const Trans& trans);

  bool is_var_trans() const { return arity == 0 && x == NULL; }
  bool is_cst_trans(Tree &_x) const { _x = x; return arity == 0 && x != NULL; }
  bool is_op_trans(Node &_n) const { _n = n; return arity > 0; }

  bool operator == (const Trans& trans) const
  { return arity == trans.arity && x == trans.x && n == trans.n; }
  bool operator < (const Trans& trans) const
  { return (arity < trans.arity) ? 1 :
      (arity > trans.arity) ? 0 :
      (arity == 0) ? (x < trans.x) :
      (n.getSym() < trans.n.getSym()); }

#ifdef DEBUG
  ostream& print(ostream& fout) const;
#endif
};

/* states */

struct State {
  int s; // state number
  bool match_num; // whether state has a transition on a numeric constant
  list<Rule> rules; // rule markers
  list<Trans> trans; // transitions (1st transition is on variable if available)
  State() :
    s(0), match_num(false), rules(list<Rule>()), trans(list<Trans>()) {}
  State(const State& state) :
    s(state.s), match_num(state.match_num),
    rules(state.rules), trans(state.trans) {}

  State& operator = (const State& state)
  { s = state.s; match_num = state.match_num;
    rules = state.rules; trans = state.trans; 
	return *this;
  }

#ifdef DEBUG
  ostream& print(ostream& fout) const;
#endif
};

// these need to come here so that the storage size of struct State is known

Trans::Trans(Tree _x) :
  x(_x), n(0), arity(0), state(new State)
{
}

Trans::Trans(const Node& _n, int _arity) :
  x(NULL), n(_n), arity(_arity), state(new State)
{
}

Trans::Trans(const Trans& trans) :
  x(trans.x), n(trans.n), arity(trans.arity)
{
  state = new State(*trans.state);
}

Trans::~Trans()
{
  delete state;
}

Trans& Trans::operator = (const Trans& trans)
{
  x = trans.x; n = trans.n; arity = trans.arity;
  state = new State(*trans.state);
  return *this;
}

/* the automaton */

struct Automaton {
  vector<State*> state;
  vector<Tree> rhs;

  Automaton() : state(vector<State*>()), rhs(vector<Tree>()), s(0) {}

  // number of rules
  int n_rules() { return rhs.size(); }
  // markers of rules still active in state s
  const list<Rule>& rules(int s) { return state[s]->rules; }
  // transitions in state s
  const list<Trans>& trans(int s) { return state[s]->trans; }
  // is s a final state?
  bool final(int s) { return trans(s).empty(); }

  // assign state numbers and build the state table
  int s;
  void build(State *st);

#ifdef DEBUG
  ostream& print(ostream& fout) const;
#endif
};

void Automaton::build(State *st)
{
  state.push_back(st);
  st->s = s++;
  list<Trans>::const_iterator t;
  for (t = st->trans.begin(); t != st->trans.end(); t++) {
    Tree x;
    double f; 
    int i;
    if (t->is_cst_trans(x) &&
	(isBoxInt(x, &i) || isBoxReal(x, &f)))
      st->match_num = true;
    build(t->state);
  }
}

/* Debugging output. */

#ifdef DEBUG
inline ostream& operator << (ostream& s, const Rule& x)
{ return x.print(s); }
inline ostream& operator << (ostream& s, const Trans& x)
{ return x.print(s); }
inline ostream& operator << (ostream& s, const State& x)
{ return x.print(s); }
inline ostream& operator << (ostream& s, const Automaton& x)
{ return x.print(s); }

ostream& Rule::print(ostream& fout) const
{
  if (id != NULL)
    fout << "#" << r << "(" << *id << ")";
  else
    fout << "#" << r;
  return fout;
}

ostream& Trans::print(ostream& fout) const
{
  if (arity > 0)
    fout << "\top  " << n << ": state " << state->s << endl;
  else if (x == NULL)
    fout << "\tvar _: state " << state->s << endl;
  else
    fout << "\tcst " << *x << ": state " << state->s << endl;
  return fout;
}

ostream& State::print(ostream& fout) const
{
  fout << "state " << s << ":";
  list<Rule>::const_iterator r;
  for (r = rules.begin(); r != rules.end(); r++)
    fout << " " << *r;
  fout << endl;
  list<Trans>::const_iterator t;
  for (t = trans.begin(); t != trans.end(); t++)
    fout << *t;
  return fout;
}

ostream& Automaton::print(ostream& fout) const
{
  int i, n = rhs.size();
  for (i = 0; i < n; i++)
    fout << "rule #" << i << ": " << *rhs[i] << endl;
  n = state.size();
  for (i = 0; i < n; i++)
    fout << *state[i];
  return fout;
}
#endif

/* Construction algorithm for the pattern matching automaton.
 *
 * We employ the incremental technique described in Graef: Left-To-Right Tree
 * Pattern Matching, Proc. RTA 1991, Springer 1991 (LNCS 488) to construct a
 * tree automaton (TA) for the given patterns. The basic outline of the
 * technique is as follows. Initially, the automaton is empty. From each
 * pattern we produce a trie (considering the pattern as a string of variable
 * and function symbols and constants). This trie is then merged with the TA
 * obtained so far. The latter process is similar to merging two deterministic
 * finite automata, but it also takes into account the variables (see the
 * merge_state() routine below).
 */

/* Construct a trie from a term tree. Takes the "start" and returns the "end"
   state of the (sub-)trie. */

static State *make_state(State *state, int r, Tree x, Path& p)
{
  Tree id, x0, x1;
  Node op(0);
  if (isBoxPatternVar(x, id)) {
    /* variable */
    Rule rule(r, id, p);
    state->rules.push_back(rule);
    Trans trans(NULL);
    state->trans.push_back(trans);
    return state->trans.begin()->state;
  } else if (isBoxPatternOp(x, op, x0, x1)) {
    /* composite pattern */
    Rule rule(r, NULL);
    state->rules.push_back(rule);
    Trans trans(op, 2);
    state->trans.push_back(trans);
    State *next = state->trans.begin()->state;
    p.push_back(0);
    next = make_state(next, r, x0, p);
    p.pop_back();
    p.push_back(1);
    next = make_state(next, r, x1, p);
    p.pop_back();
    return next;
  } else {
    /* constant */
    Rule rule(r, NULL);
    state->rules.push_back(rule);
    Trans trans(x);
    state->trans.push_back(trans);
    return state->trans.begin()->state;
  }
}

/* Take a copy of a state and prefix it with n variable transitions. */

static State *make_var_state(int n, State *state)
{
  if (n <= 0)
    return new State(*state);
  list<Rule>rules = state->rules;
  list<Rule>::iterator r;
  for (r = rules.begin(); r != rules.end(); r++) {
    r->id = NULL; r->p = Path();
  }
  State *prefix = new State, *current = prefix;
  while (n-- > 0) {
    current->rules = rules;
    Trans trans(NULL);
    current->trans.push_back(trans);
    current = current->trans.begin()->state;
  }
  *current = *state;
  return prefix;
}

/* Merge two tree automata. Merges the tree automaton rooted at state2 into
   the automaton rooted at state1. We assume that state2 is in "trie" form,
   i.e., each state has at most one transition, which is always guaranteed
   here and simplifies the algorithm. */

static void merge_state(State *state1, State *state2);

static void inline merge_rules(list<Rule>& rules1, list<Rule>& rules2)
{
  list<Rule> cprules2 = rules2;
  rules1.merge(cprules2);
}

static void merge_trans_var(list<Trans>& trans, State *state)
{
  if (!trans.begin()->is_var_trans()) {
    /* If we don't have a variable transition in this state yet then create a
       new one. */
    Trans tr(NULL);
    trans.push_front(tr);
  }
  list<Trans>::const_iterator t;
  Tree x;
  Node op(0);
  for (t = trans.begin(); t != trans.end(); t++) {
    if (t->is_var_trans())
      merge_state(t->state, state);
    else if (t->is_cst_trans(x)) {
      /* add the completion of the given state for a constant */
      merge_state(t->state, state);
    } else if (t->is_op_trans(op)) {
      /* add the completion of the given state for an arity>0 op */
      State *state1 = make_var_state(t->arity, state);
      merge_state(t->state, state1);
      delete state1;
    }
  }
}

static void merge_trans_cst(list<Trans>& trans, Tree x, State *state)
{
  list<Trans>::iterator t0 = trans.begin(), t1 = t0, t;
  Tree x1;
  if (t0->is_var_trans()) t1++;
  for (t = t1; t != trans.end(); t++) {
    if (t->is_cst_trans(x1)) {
      if (x == x1) {
	merge_state(t->state, state);
	return;
      } else if (x < x1)
	break;
    }
  }
  /* no matching transition has been found; add a new one */
  Trans tr(x);
  trans.insert(t, tr); t--;
  State *state1 = t->state;
  *state1 = *state;
  if (t1 != t0) {
    /* if we have a variable transition in the current state, we also need to
       merge its completion for the current symbol/constant */
    merge_state(state1, t0->state);
  }
}

static void merge_trans_op(list<Trans>& trans, const Node& op,
			   int arity, State *state)
{
  /* analogous to merge_trans_cst above, but handles the arity>0 case */
  list<Trans>::iterator t0 = trans.begin(), t1 = t0, t;
  Node op1(0);
  if (t0->is_var_trans()) t1++;
  for (t = t1; t != trans.end(); t++) {
    if (t->is_op_trans(op1)) {
      if (op == op1) {
	merge_state(t->state, state);
	return;
      } else if (op.getSym() < op1.getSym())
	break;
    }
  }
  Trans tr(op, arity);
  trans.insert(t, tr); t--;
  State *state1 = t->state;
  *state1 = *state;
  if (t1 != t0) {
    State *state2 = make_var_state(arity, t0->state);
    merge_state(state1, state2);
    delete state2;
  }
}

static void merge_trans(list<Trans>& trans1, list<Trans>& trans2)
{
  Tree x;
  Node op(0);
  if (trans2.empty())
    ;
  else if (trans1.empty()) {
    list<Trans> cptrans2 = trans2;
    /* append a copy of trans2 to trans1 */
    trans1.splice(trans1.end(), cptrans2);
  } else if (trans2.begin()->is_var_trans())
    /* merge a variable transition */
    merge_trans_var(trans1, trans2.begin()->state);
  else if (trans2.begin()->is_cst_trans(x))
    /* merge a constant transition */
    merge_trans_cst(trans1, x, trans2.begin()->state);
  else if (trans2.begin()->is_op_trans(op))
    /* merge a BDA op transition */
    merge_trans_op(trans1, op, trans2.begin()->arity, trans2.begin()->state);
}

static void merge_state(State *state1, State *state2)
{
  merge_rules(state1->rules, state2->rules);
  merge_trans(state1->trans, state2->trans);
}

/* Take the rules of a BoxCase expression and return a pointer to the
   corresponding TA automaton (interface operation). */

Automaton *make_pattern_matcher(Tree R)
/* Tree R encodes the rules of a case box expressions as a Tree object, as
   follows:

   Rules	::= cons Rule (cons Rule ... nil)
   Rule		::= cons Lhs Rhs
   Lhs		::= cons Pattern (cons Pattern ... nil)
   Pattern	::= Tree (parameter pattern)
   Rhs		::= Tree

   NOTE: The lists of rules and patterns are actually delivered in reverse
   order by the parser, so we have to reverse them on the fly. */
{
  Automaton *A = new Automaton;
  int n = len(R), r = n;
  State *start = new State;
  Tree rule, rest;
  vector<Tree> rules(n, (Tree)NULL);
  vector< vector<Tree> > testpats(n);
  while (isCons(R, rule, rest)) {
    rules[--r] = rule;
    R = rest;
  }
  for (r = 0; r < n; r++) {
    Tree lhs, rhs;
    if (isCons(rules[r], lhs, rhs)) {
      Tree pat, rest;
      int m = len(lhs), i = m;
      vector<Tree> pats(len(lhs), (Tree)NULL);
      State *state0 = new State, *state = state0;
      A->rhs.push_back(rhs);
      while (isCons(lhs, pat, rest)) {
	pats[--i] = pat;
	lhs = rest;
      }
      testpats[r] = pats;
      for (i = 0; i < m; i++) {
	Path p;
	state = make_state(state, r, pats[i], p);
      }
      Rule rule(r, NULL);
      state->rules.push_back(rule);
      merge_state(start, state0);
      delete state0;
    }
  }
  A->build(start);
  /* Check for shadowed rules. Note that because of potential nonlinearities
     it is *not* enough to just check the rule lists of final states and
     determine whether they have multiple matched rules. */
  for (r = 0; r < n; r++) {
    int s = 0, m = testpats[r].size();
    Tree C;
    vector<Tree> E(n, nil);
    /* try to match the lhs of rule #r */
    for (int i = 0; i < m; i++) {
      s = apply_pattern_matcher(A, s, testpats[r][i], C, E);
      if (s < 0) break;
    }
    if (A->final(s)) {
      list<Rule>::const_iterator ru;
      for (ru = A->rules(s).begin(); ru != A->rules(s).end(); ru++)
	if (!isBoxError(E[ru->r]))
	  if (ru->r < r) {
	    /* Lhs of rule #r matched a higher-priority rule, so rule #r may
	       be shadowed. */
	    Tree lhs1, rhs1, lhs2, rhs2;
	    if (isCons(rules[ru->r], lhs1, rhs1) &&  isCons(rules[r], lhs2, rhs2)) {
			cerr 	<< "WARNING : shadowed pattern-matching rule: "
				<< boxpp(reverse(lhs2)) << " => " << boxpp(rhs2) << ";"
				<< " previous rule was: " 
				<< boxpp(reverse(lhs1)) << " => " << boxpp(rhs1) << ";"
				<< endl;
		} else {
			cerr << "INTERNAL ERROR : " << __FILE__ << ":" << __LINE__ << endl;
			exit(1);
		}
	  } else if (ru->r >= r)
	    break;
    }
  }
#ifdef DEBUG
  cerr << "automaton " << A << endl << *A << "end automaton" << endl;
#endif
  return A;
}

/* Helper type to represent variable substitutions which are recorded during
   matching. Each variable is associated with the path pointing at the subterm
   of the argument where the substitution of the matched variable is to be
   found. */

struct Assoc {
  Tree id;
  Path p;
  Assoc(Tree _id, const Path& _p) : id(_id), p(_p) {}
};
typedef list<Assoc> Subst;

/* add all substitutions for a given state */

static void add_subst(vector<Subst>& subst, Automaton *A, int s)
{
  list<Rule> rules = A->rules(s);
  list<Rule>::const_iterator r;
  for (r = rules.begin(); r != rules.end(); r++)
    if (r->id != NULL)
      subst[r->r].push_back(Assoc(r->id, r->p));
}

/* Process a given term tree X starting from state s, modify variable
   substitutions accordingly. Returns the resulting state, or -1 if no
   match. This does all the grunt work of matching. */

static int apply_pattern_matcher_internal(Automaton *A, int s, Tree X,
					  vector<Subst>& subst)
{
  /* FIXME: rewrite this non-recursively? */
  if (s >= 0) {
    list<Trans>::const_iterator t;
    if (A->state[s]->match_num)
      /* simplify possible numeric argument on the fly */
      X = simplifyPattern(X);
    /* first check for applicable non-variable transitions */
    for (t = A->trans(s).begin(); t != A->trans(s).end(); t++) {
      Tree x;
      Node op(0), op1(0);
      if (t->is_var_trans())
	continue;
      else if (t->is_cst_trans(x)) {
	if (X==x) {
	  /* transition on constant */
#ifdef DEBUG
      cerr << "state " << s << ", " << *x << ": goto state " << t->state->s << endl;
#endif
	  add_subst(subst, A, s);
	  s = t->state->s;
	  return s;
	}
      } else if (t->is_op_trans(op)) {
	Tree x0, x1;
	if (isBoxPatternOp(X, op1, x0, x1) && op == op1) {
	  /* transition on operation symbol */
#ifdef DEBUG
      cerr << "state " << s << ", " << op << ": goto state " << t->state->s << endl;
#endif
	  add_subst(subst, A, s);
	  s = t->state->s;
	  if (s >= 0)
	    s = apply_pattern_matcher_internal(A, s, x0, subst);
	  if (s >= 0)
	    s = apply_pattern_matcher_internal(A, s, x1, subst);
	  return s;
	}
      }
    }
    /* check for variable transition (is always first in the list of
       transitions) */
    t = A->trans(s).begin();
    if (t->is_var_trans()) {
#ifdef DEBUG
      cerr << "state " << s << ", _: goto state " << t->state->s << endl;
#endif
      add_subst(subst, A, s);
      s = t->state->s;
    } else {
#ifdef DEBUG
      cerr << "state " << s << ", *** match failed ***" << endl;
#endif
      s = -1;
    }
  }
  return s;
}

/* Apply the pattern matcher to a single argument, starting from a given state
   (interface operation). Returns the resulting state, modifies the variable
   bindings E accordingly, and sets C to the resulting closure if a final
   state is reached. Result will be -1 to indicate a matching failure, and C
   will be set to nil if no final state has been reached yet. */

int apply_pattern_matcher(Automaton *A,		// automaton
                          int s,		// start state
	                  Tree X,		// arg to be matched
			  Tree& C,		// output closure (if any)
			  vector<Tree>& E)	// modified output environments
{
  int n = A->n_rules();
  vector<Subst> subst(n, Subst());
  /* perform matching, record variable substitutions */
#ifdef DEBUG
  cerr << "automaton " << A << ", state " << s << ", start match on arg: " << *X << endl;
#endif
  s = apply_pattern_matcher_internal(A, s, X, subst);
  C = nil;
  if (s < 0)
    /* failed match */
    return s;
  /* process variable substitutions */
  list<Rule>::const_iterator r;
  for (r = A->rules(s).begin(); r != A->rules(s).end(); r++) {
    // all rules still active in state s
    if (!isBoxError(E[r->r])) { // and still viable
      Subst::const_iterator assoc;
      for (assoc = subst[r->r].begin(); assoc != subst[r->r].end(); assoc++) {
	Tree Z, Z1 = subtree(X, 0, assoc->p);
	if (searchIdDef(assoc->id, Z, E[r->r])) {
	  if (Z != Z1) {
	    /* failed nonlinearity, add to the set of nonviable rules */
#ifdef DEBUG
      cerr << "state " << s << ", rule #" << r->r << ": " <<
	    *assoc->id << " := " << *Z1 << " *** failed *** old value: " <<
	    *Z << endl;
#endif
	    E[r->r] = boxError();
	  }
	} else {
	  /* bind a variable for the current rule */
#ifdef DEBUG
      cerr << "state " << s << ", rule #" << r->r << ": " <<
	    *assoc->id << " := " << *Z1 << endl;
#endif
	  E[r->r] = pushValueDef(assoc->id, Z1, E[r->r]);
	}
      }
    }
  }
  if (A->final(s)) {
    /* if in a final state then return the right-hand side together with the
       corresponding variable environment */
    for (r = A->rules(s).begin(); r != A->rules(s).end(); r++) // all rules matched in state s
      if (!isBoxError(E[r->r])) { // and still viable
	/* return the rhs of the matched rule */
	C = closure(A->rhs[r->r], nil, nil, E[r->r]);
#ifdef DEBUG
    cerr << "state " << s << ", complete match yields rhs #" << r->r <<
	  ": " << *A->rhs[r->r] << endl;
#endif
	return s;
      }
    /* if none of the rules were matched then declare a failed match */
#ifdef DEBUG
    cerr << "state " << s << ", *** match failed ***" << endl;
#endif
    return -1;
  }
#ifdef DEBUG
  cerr << "state " << s << ", successful incomplete match" << endl;
#endif
  return s;
}