File: tree.hh

package info (click to toggle)
faust 0.9.46-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 15,256 kB
  • ctags: 9,961
  • sloc: cpp: 47,746; sh: 2,254; ansic: 1,503; makefile: 1,211; ruby: 950; yacc: 468; objc: 459; lex: 200; xml: 177
file content (267 lines) | stat: -rw-r--r-- 11,790 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/************************************************************************
 ************************************************************************
    FAUST compiler
	Copyright (C) 2003-2004 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/


/*****************************************************************************
******************************************************************************/

/** \file tree.hh
 * A tree library with hashconsing and maximal sharing capabilities.
 *
 * A tree library with hashconsing and maximal sharing capabilities.
 *
 * <b>API:</b>
 *
 * \li tree (n) 				: tree of node n with no branch
 * \li tree (n, t1) 			: tree of node n with a branch t
 * \li tree (n, t1,...,tm)		: tree of node n with m branches t1,...,tm
 *
 * <b>Useful conversions :</b>
 *
 * \li int 			tree2int (t)	: if t has a node of type int, return it otherwise error
 * \li float 		tree2float (t)	: if t has a node of type float, return it otherwise error
 * \li const char* 	tree2str (t)	: if t has a node of type symbol, return its name otherwise error
 * \li void* 		tree2ptr (t)	: if t has a node of type ptr, return it otherwise error
 *
 * <b>Pattern matching :</b>
 *
 * \li if (isTree (t, n)) 		... 	: t has node n and no branches;
 * \li if (isTree (t, n, &t1)		... : t has node n and 1 branch, t1 is set accordingly;
 * \li if (isTree (t, n, &t1...&tm)...	: t has node n and m branches, ti's are set accordingly;
 *
 * <b>Accessors :</b>
 *
 * \li t->node()		: the node of t		{ return fNode; }
 * \li t->height() 		: lambda height such that H(x)=0, H(\x.e)=1+H(e), H(e*f)=max(H(e),H(f))
 * \li t->arity() 		: the number of branches of t { return fArity; }
 * \li t->branch(i) 	: the ith branch of t
 *
 * <b>Attributs :</b>
 *
 * \li t->attribut() 	: return the attribut (also a tree) of t
 * \li t->attribut(t')	: set the attribut of t to t'
 *
 *
 * <b>Properties:</b>
 *
 * If p and q are two CTree pointers  :
 * 		p != q  <=>  *p != *q
 *
 **/

/*****************************************************************************
******************************************************************************/



#ifndef     __TREE__
#define     __TREE__

#include "symbol.hh"
#include "node.hh"
#include <vector>
#include <map>
#include <assert.h>

//---------------------------------API---------------------------------------

class 	CTree;
typedef CTree* Tree;

typedef map<Tree, Tree>	plist;
typedef vector<Tree>	tvec;

/**
 * A CTree = (Node x [CTree]) is a Node associated with a list of subtrees called branches.
 * A CTree = (Node x [CTree]) is the association of a content Node and a list of subtrees
 * called branches. In order to maximize the sharing of trees, hashconsing techniques are used.
 * Ctrees at different addresses always have a different content. A first consequence of this
 * approach is that a fast equality test on pointers can be used as an equality test on CTrees.
 * A second consequence is that a CTree can NEVER be modified. But a property list is associated
 * to each CTree that can be used to attach arbitrary information to it. Due to the maximal
 * sharing property it is therefore easy to do memoization using these property lists.
 *
 * Means are also provided to do maximal sharing on recursive trees. The idea is to start from
 * a deBruijn representation and progressively build a classical representation such that
 * alpha-equivalent recursive CTrees are necesseraly identical (and therefore shared).
 *
 * WARNING : in the current implementation CTrees are allocated but never deleted
 **/

class CTree
{
 private:
	static const int 	kHashTableSize = 2000000; //510511;	///< size of the hash table used for "hash consing"
	static Tree			gHashTable[kHashTableSize];	///< hash table used for "hash consing"

 public:
	static bool			gDetails;					///< Ctree::print() print with more details when true
    static unsigned int gVisitTime;                 ///< Should be incremented for each new visit to keep track of visited tree.

 private:
	// fields
    Tree            fNext;				///< next tree in the same hashtable entry
    Node            fNode;				///< the node content of the tree
    void*           fType;				///< the type of a tree
    plist           fProperties;		///< the properties list attached to the tree
    unsigned int	fHashKey;			///< the hashtable key
    int             fAperture;			///< how "open" is a tree (synthezised field)
    unsigned int	fVisitTime;			///< keep track of visits
    tvec            fBranch;			///< the subtrees

	CTree (unsigned int hk, const Node& n, const tvec& br); 						///< construction is private, uses tree::make instead

	bool 		equiv 				(const Node& n, const tvec& br) const;	///< used to check if an equivalent tree already exists
	static unsigned int	calcTreeHash 		(const Node& n, const tvec& br);		///< compute the hash key of a tree according to its node and branches
	static int	calcTreeAperture 	(const Node& n, const tvec& br);		///< compute how open is a tree

 public:
	~CTree ();

	static Tree make (const Node& n, int ar, Tree br[]);		///< return a new tree or an existing equivalent one
	static Tree make(const Node& n, const tvec& br);			///< return a new tree or an existing equivalent one

 	// Accessors
 	const Node& node() const		{ return fNode; 		}	///< return the content of the tree
 	int 		arity() const		{ return fBranch.size();}	///< return the number of branches (subtrees) of a tree
	Tree 		branch(int i) const	{ return fBranch[i];	}	///< return the ith branch (subtree) of a tree
 	unsigned int 		hashkey() const		{ return fHashKey; 		}	///< return the hashkey of the tree
 	int 		aperture() const	{ return fAperture; 	}	///< return how "open" is a tree in terms of free variables
 	void 		setAperture(int a) 	{ fAperture=a; 			}	///< modify the aperture of a tree


	// Print a tree and the hash table (for debugging purposes)
	ostream& 	print (ostream& fout) const; 					///< print recursively the content of a tree on a stream
	static void control ();										///< print the hash table content (for debug purpose)

	// type information
	void		setType(void* t) 	{ fType = t; }
	void*		getType() 			{ return fType; }
	
    // Keep track of visited trees (WARNING : non reentrant)
    static void     startNewVisit()                 { ++gVisitTime; }
    bool            isAlreadyVisited()              { return fVisitTime==gVisitTime; }
    void            setVisited()                    { /*assert(fVisitTime!=gVisitTime);*/ fVisitTime=gVisitTime; }


	// Property list of a tree
	void		setProperty(Tree key, Tree value) { fProperties[key] = value; }
	void		clearProperty(Tree key) { fProperties.erase(key); }
	void		clearProperties()		{ fProperties = plist(); }

	void		exportProperties(vector<Tree>& keys, vector<Tree>& values);

	Tree		getProperty(Tree key) {
		plist::iterator i = fProperties.find(key);
		if (i==fProperties.end()) {
			return 0;
		} else {
			return i->second;
		}
	}
};

//---------------------------------API---------------------------------------

// to build trees
inline Tree tree (const Node& n) { Tree br[1]; return CTree::make(n, 0, br); }
inline Tree tree (const Node& n, const Tree& a) { Tree br[]= {a}; return CTree::make(n, 1, br); }
inline Tree tree (const Node& n, const Tree& a, const Tree& b) { Tree br[]= {a,b}; return CTree::make(n, 2, br); }
inline Tree tree (const Node& n, const Tree& a, const Tree& b, const Tree& c) { Tree br[]= {a,b,c}; return CTree::make(n, 3, br); }
inline Tree tree (const Node& n, const Tree& a, const Tree& b, const Tree& c, const Tree& d) { Tree br[]= {a,b,c,d}; return CTree::make(n, 4, br); }

inline Tree tree (const Node& n, const Tree& a, const Tree& b, const Tree& c, const Tree& d, const Tree& e) { Tree br[]= {a,b,c,d,e}; return CTree::make(n, 5, br); }

// useful conversions
int 		tree2int (Tree t);		///< if t has a node of type int, return it otherwise error
double      tree2float (Tree t);    ///< if t has a node of type float, return it otherwise error
double      tree2double (Tree t);    ///< if t has a node of type float, return it otherwise error
const char* tree2str (Tree t);		///< if t has a node of type symbol, return its name otherwise error
void* 		tree2ptr (Tree t);		///< if t has a node of type ptr, return it otherwise error
void*		getUserData(Tree t);	///< if t has a node of type symbol, return the associated user data

// pattern matching
bool isTree (const Tree& t, const Node& n);
bool isTree (const Tree& t, const Node& n, Tree& a);
bool isTree (const Tree& t, const Node& n, Tree& a, Tree& b);
bool isTree (const Tree& t, const Node& n, Tree& a, Tree& b, Tree& c);
bool isTree (const Tree& t, const Node& n, Tree& a, Tree& b, Tree& c, Tree& d);
bool isTree (const Tree& t, const Node& n, Tree& a, Tree& b, Tree& c, Tree& d, Tree& e);

//printing
inline ostream& operator << (ostream& s, const CTree& t) { return t.print(s); }


//-----------------------------------------------------------------------------
// recursive trees
//-----------------------------------------------------------------------------

// creation a recursive trees

Tree rec(Tree body);						///< create a de Bruijn recursive tree
Tree rec(Tree id, Tree body);				///< create a symbolic recursive tree

bool isRec(Tree t, Tree& body);				///< is t a de Bruijn recursive tree
bool isRec(Tree t, Tree& id, Tree& body);	///< is t a symbolic recursive tree

// creation of recursive references

Tree ref(int level);						///< create a de Bruijn recursive reference
Tree ref(Tree id);							///< create a symbolic recursive reference

bool isRef(Tree t, int& level);				///< is t a de Bruijn recursive reference
bool isRef(Tree t, Tree& id);				///< is t a symbolic recursive reference


// Open vs Closed regarding de Bruijn references

inline bool isOpen(Tree t)	 { return t->aperture() > 0; }	///< t contains free de Bruijn references
inline bool isClosed(Tree t) { return t->aperture() <= 0;}	///< t dont contain free de Bruijn ref

// lift by 1 the free de Bruijn references

Tree lift(Tree t); 							////< add 1 to the free de bruijn references of t

Tree deBruijn2Sym (Tree t);					////< transform a tree from deBruijn to symbolic notation
void updateAperture (Tree t);				////< update aperture field of a tree in symbolic notation

//---------------------------------------------------------------------------

class Tabber
{
	int fIndent;
    int fPostInc;
  public:
    Tabber(int n=0) : fIndent(n), fPostInc(0)	{}
    Tabber& operator++() 			{ fPostInc++; return *this;}
	Tabber& operator--() 			{ assert(fIndent > 0); fIndent--; return *this; }

	ostream& print (ostream& fout)
                        { for (int i=0; i<fIndent; i++) fout << '\t';  fIndent+=fPostInc; fPostInc=0; return fout; }
};

//printing
inline ostream& operator << (ostream& s, Tabber& t) { return t.print(s); }

extern Tabber TABBER;


#endif