1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
|
#include <stdio.h>
#include <assert.h>
#include "tlib.hh"
#include "signals.hh"
#include "sigprint.hh"
#include "simplify.hh"
#include "normalize.hh"
#include "sigorderrules.hh"
#include <map>
#include <list>
static void countAddTerm (map<Tree,Tree>& M, Tree t, bool invflag);
static void incTermCount (map<Tree,int>& M, Tree t, bool invflag);
static Tree buildPowTerm (Tree f, int q);
static Tree simplifyingAdd (Tree t1, Tree t2);
static Tree simplifyingMul (Tree t1, Tree t2);
static Tree simplifyingReorganizingMul(Tree t1, Tree t2);
static Tree reorganizingMul(Tree k, Tree t);
static void factorizeAddTerm(map<Tree,Tree>& M);
#undef TRACE
/**
* Compute the Add-Normal form of a term t.
* \param t the term to be normalized
* \return the normalized term
*/
Tree normalizeAddTerm(Tree t)
{
#ifdef TRACE
fprintf(stderr, "START ADD Normalize of : "); printSignal(t, stderr); fputs("\n", stderr);
#endif
assert(t!=0);
map<Tree,Tree> M;
Tree coef = tree(0);
collectAddTerms(coef, M, t, false);
factorizeAddTerm(M);
Tree result = buildAddTerm(coef, M);
#ifdef TRACE
fprintf(stderr, "END ADD Normalize -> "); printSignal(result, stderr); fputs("\n", stderr);
#endif
return result;
}
/**
* Compute the Mul-Normal form of a term t.
* \param t the term to be normalized
* \return the normalized term
*/
Tree normalizeMulTerm(Tree t)
{
assert(t!=0);
#ifdef TRACE
fprintf(stderr, "START MUL Normalize of : "); printSignal(t, stderr); fputs("\n", stderr);
#endif
map<Tree,int> M;
Tree coef = tree(1);
collectMulTerms(coef, M, t, false);
Tree result = buildMulTerm(coef, M);
#ifdef TRACE
fprintf(stderr, "END MUL Normalize -> "); printSignal(result, stderr); fputs("\n", stderr);
#endif
return result;
}
/**
* Collects the added terms in the form (k0 + k1*f1 + k2*f2, ...)
*/
void collectAddTerms (Tree& coef, map<Tree,Tree>& M, Tree t, bool invflag)
{
int op;
Tree x,y;
assert(t!=0);
if (isSigBinOp(t, &op, x, y) && (op == kAdd)) {
collectAddTerms(coef, M, x, invflag);
collectAddTerms(coef, M, y, invflag);
} else if (isSigBinOp(t, &op, x, y) && (op == kSub)) {
collectAddTerms(coef, M, x, invflag);
collectAddTerms(coef, M, y, !invflag);
} else if (isNum(t)) {
coef = (invflag) ? subNums(coef,t) : addNums(coef,t);
} else {
countAddTerm(M, normalizeMulTerm(t), invflag);
}
}
/**
* Collects the multiplied terms in the form (k0 * f1**k1 * f2**k2 * ...)
*/
void collectMulTerms (Tree& coef, map<Tree,int>& M, Tree t, bool invflag)
{
int op;
Tree x,y;
assert(t!=0);
if (isSigBinOp(t, &op, x, y) && (op == kMul)) {
collectMulTerms(coef, M, x, invflag);
collectMulTerms(coef, M, y, invflag);
} else if (isSigBinOp(t, &op, x, y) && (op == kDiv)) {
collectMulTerms(coef, M, x, invflag);
collectMulTerms(coef, M, y, !invflag);
} else if (isSigBinOp(t, &op, x, y) && (op == kSub) && isZero(x)) {
// 0-x est equivalent -1*x est est trait�de cette mani�e
coef = minusNum(coef);
collectMulTerms(coef, M, y, invflag);
} else if (isNum(t)) {
coef = (invflag) ? divExtendedNums(coef,t) : mulNums(coef,t);
} else {
#if 0
// check if recursive call to normalizeAddTerm is needed
int op;
Tree x,y;
if (isSigBinOp(t, &op, x, y) && ((op == kAdd) || (op == kSub))) {
t = normalizeAddTerm(t);
}
#endif
incTermCount(M,t,invflag);
}
}
/**
* make a flat list (in a vector) of all the added terms of t
*/
static void flatListTerms(int op, vector<Tree>& v, Tree t)
{
Tree x, y;
int opcode;
assert(t);
if (isSigBinOp(t, &opcode, x, y) && opcode==op) {
flatListTerms(op,v,x); flatListTerms(op,v,y);
} else {
v.push_back(t);
}
}
/**
* recursive build of a mid balanced tree of terms for operation op
* between [lo..hi[ (hi excluded)
*/
static Tree buildMidBalancedTerm(int op, vector<Tree>& v, int lo, int hi)
{
int q = hi-lo;
assert(q>0);
if (q == 1) {
assert(lo < int(v.size()));
return v[lo];
} else {
int mi = (hi+lo)/2;
return sigBinOp( op, buildMidBalancedTerm(op,v,lo,mi), buildMidBalancedTerm(op,v,mi,hi) );
}
}
/**
* recursive build of a right balanced tree of terms for operation op
* between [lo..hi[ (hi excluded)
*/
static Tree buildRightBalancedTerm(int op, vector<Tree>& v, int lo, int hi)
{
int q = hi-lo;
assert(q>0);
if (q == 1) {
assert(lo < int(v.size()));
return v[lo];
} else {
return sigBinOp( op, v[lo], buildRightBalancedTerm(op,v,lo+1,hi));
}
}
/**
* recursive build of a left balanced tree of terms for operation op
* between [lo..hi[ (hi excluded)
*/
static Tree buildLeftBalancedTerm(int op, vector<Tree>& v, int lo, int hi)
{
int q = hi-lo;
assert(q>0);
if (q == 1) {
assert(lo < int(v.size()));
return v[lo];
} else {
return sigBinOp( op, buildLeftBalancedTerm(op,v,lo,hi-1), v[hi-1]);
}
}
/**
* create a balanced term for a certain binary operation op
*/
extern int gBalancedSwitch;
static Tree balanceTerm(int op, Tree t)
{
vector<Tree> v;
flatListTerms(op, v, t);
if (v.size() == 0) {
return t;
} else {
switch (gBalancedSwitch) {
case 0 : return buildLeftBalancedTerm(op, v, 0, v.size());
case 1 : return buildMidBalancedTerm(op, v, 0, v.size());
case 2 : return buildRightBalancedTerm(op, v, 0, v.size());
default: return buildLeftBalancedTerm(op, v, 0, v.size());
}
}
}
/**
* Build an additive term in normal form : (k+f1+f2+..fn) - (g1+g2+...)
* The terms are ordered so that constants are together, etc.
*/
Tree buildAddTerm(Tree k, map<Tree,Tree>& M)
{
Tree pt, nt;
assert(k!=0);
if (isGEZero(k)) {
pt = k; nt = tree(0);
} else {
pt = tree(0); nt = minusNum(k);
}
for (int order = 0; order < 4; order++) {
for (map<Tree,Tree>::iterator F = M.begin(); F != M.end(); F++) {
Tree f = F->first; // f = factor
Tree q = F->second; // q = quantity
if (getSigOrder(f)==order) {
if (isGEZero(q)) {
pt = simplifyingAdd(pt, simplifyingReorganizingMul(q,f));
} else {
nt = simplifyingAdd(nt, simplifyingReorganizingMul(minusNum(q),f));
}
}
}
}
if (isZero(nt)) {
return balanceTerm(kAdd, pt);
} else {
return sigSub(balanceTerm(kAdd, pt),balanceTerm(kAdd, nt));
}
}
/**
* Build an multiplicative term in normal form : (k*f1*f2*..fn)) / (g1*g2*...)
* The terms are ordered so that constants are together, etc.
*/
Tree buildMulTerm(Tree k, map<Tree,int>& M)
{
assert(k!=0);
Tree t = tree(1.0f); // t will be ((F1.F2)..Fn)
for (int order = 0; order < 4; order++) {
for (map<Tree,int>::iterator F = M.begin(); F != M.end(); F++) {
Tree f = F->first; // f = factor
int q = F->second; // q = power of f
if (getSigOrder(f)==order) {
if (q > 0) {
t = simplifyingMul(t, buildPowTerm(f,q));
} else if (q < 0) {
t = sigDiv(t, buildPowTerm(f,-q));
} else {
// (q == 0), no changes in t
}
}
}
}
// return simplifyingMul(k, t);
return simplifyingMul(k, balanceTerm(kMul,t));
}
/**
* Add a term k*f in additive map M and update its count M[f]+=k
*/
static void countAddTerm(map<Tree,Tree>& M, Tree t, bool invflag)
{
assert(t!=0);
Tree k, F;
if (isSigMul(t, k, F) && isNum(k)) {
//
} else {
k = tree(1);
F = t;
}
if (invflag) { k = minusNum(k); }
if (M.find(F) == M.end()) {
M[F] = k;
} else {
M[F] = addNums(M[F],k);
}
#ifdef TRACE
fprintf(stderr, "countAddTerm of ");
printSignal(F, stderr);
fprintf(stderr, " is ");
printSignal(M[F], stderr);
fprintf(stderr, "\n");
#endif
}
/**
* Add a term p in the multiplicative map M and update its count M[f]+=1
*/
static void incTermCount(map<Tree,int>& M, Tree t, bool invflag)
{
assert(t!=0);
int c = (invflag) ? -1 : 1;
if (M.find(t) == M.end()) {
M[t] = c;
} else {
M[t] += c;
}
#ifdef TRACE
fprintf(stderr, "mult term coef of ");
printSignal(t, stderr);
fprintf(stderr, " is *(%d) \n", M[t]);
#endif
}
// transform f**q into (((f.f).f)..f) with q>0
static Tree buildPowTerm(Tree f, int q)
{
assert(f!=0);
assert(q>0);
Tree r = f;
for (int c=2; c<=q; c++) { r = sigMul(r,f); }
return r;
}
static Tree simplifyingAdd(Tree t1, Tree t2)
{
assert(t1!=0);
assert(t2!=0);
if (isNum(t1) && isNum(t2)) {
return addNums(t1,t2);
} else if (isZero(t1)) {
return t2;
} else if (isZero(t2)) {
return t1;
} else if (t1 <= t2) {
return sigAdd(t1, t2);
} else {
return sigAdd(t2, t1);
}
}
static Tree reorganizingMul(Tree k, Tree t)
{
Tree x,y;
if (isNum(k) && isNum(t)) {
#ifdef TRACE
cerr << *k << " [[0]] " << *t << endl;
#endif
return mulNums(k,t);
} else if (isSigMul(t,x,y)) {
#ifdef TRACE
cerr << " [[1]] " << endl;
#endif
return sigMul(reorganizingMul(k,x),y);
} else if (isSigDiv(t,x,y)) {
#ifdef TRACE
cerr << *k << " [[2]] " << *t << endl;
#endif
return sigDiv(reorganizingMul(k,x),y);
} else {
#ifdef TRACE
cerr << " [[end]] " << endl;
#endif
return sigMul(k,t);
}
}
static Tree simplifyingReorganizingMul(Tree t1, Tree t2)
{
assert(t1!=0);
assert(t2!=0);
#ifdef TRACE
fprintf(stderr, "simplifying reorganizing Mul of ");
printSignal(t1, stderr);
fprintf(stderr, " and ");
printSignal(t2, stderr);
fprintf(stderr, " -> ");
#endif
Tree result,x,y;
if (isNum(t1) && isNum(t2)) {
#ifdef TRACE
fprintf(stderr, " [1] ");
#endif
result = mulNums(t1,t2);
} else {
// At most one number, makes sure it is t1
if (isNum(t2)) {
Tree tmp = t1; t1 = t2; t2 = tmp;
}
if (isNum(t1)) {
if (isZero(t1)) {
#ifdef TRACE
fprintf(stderr, " [2] ");
#endif
result = t1;
} else if (isOne(t1)) {
#ifdef TRACE
fprintf(stderr, " [3] ");
#endif
result = t2;
} else if (isSigDiv(t2,x,y) && isNum(x)){
#ifdef TRACE
fprintf(stderr, " [4a] ");
#endif
result = sigDiv(simplifyingReorganizingMul(t1,x),y);
} else {
#ifdef TRACE
fprintf(stderr, " [4b] ");
#endif
result = reorganizingMul(t1,t2);
}
} else {
#ifdef TRACE
fprintf(stderr, " [5] ");
#endif
result = sigMul(t1, t2);
}
}
#ifdef TRACE
printSignal(result, stderr);
fprintf(stderr, " \n ");
#endif
return result;
}
static Tree simplifyingMul(Tree t1, Tree t2)
{
assert(t1!=0);
assert(t2!=0);
#ifdef TRACE
fprintf(stderr, "simplifying mult of ");
printSignal(t1, stderr);
fprintf(stderr, " and ");
printSignal(t2, stderr);
fprintf(stderr, " -> ");
#endif
Tree result;
if (isNum(t1) && isNum(t2)) {
//fprintf(stderr, " [1] ");
result = mulNums(t1,t2);
} else if (isZero(t1) || isZero(t2)) {
//fprintf(stderr, " [2] ");
result = tree(0);
} else if (isOne(t1)) {
//fprintf(stderr, " [3] ");
result = t2;
} else if (isOne(t2)) {
//fprintf(stderr, " [4] ");
result = t1;
} else {
//fprintf(stderr, " [5] ");
result = sigMul(t1, t2);
}
//printSignal(result, stderr);
//fprintf(stderr, " \n ");
return result;
}
typedef map<Tree,int> MT;
/*
static int intersectMapTerm(MT& M1, MT& M2, MT& R)
{
int count = 0;
for (MT::const_iterator e = M1.begin(); e != M1.end(); e++) {
Tree t = e->first;
if (M2.find(t) != M2.end() && !isOne(t) && !isMinusOne(t)) {
int v1 = M1[t];
int v2 = M2[t];
if (v1*v2 > 0) {
int c = min(v1,v2);
count += c;
R[t] = c;
}
}
}
return count;
}
*/
/*
static void divideMapTerm(MT& M1, MT& M2, MT& R)
{
for (MT::const_iterator e = M2.begin(); e != M2.end(); e++) {
Tree t = e->first;
if (M1[t] > M2[t]) {
R[t] = M1[t] - M2[t];
}
}
}
*/
/*
static int maxIntersect(list<MT>& LM, MT& E1, MT& E2, MT& I)
{
int Cmax = 0;
for (list<MT>::iterator P1 = LM.begin(); P1 != LM.end(); P1++) {
for (list<MT>::iterator P2 = P1; P2 != LM.end(); P2++) {
if (P1 != P2) {
MT J;
int c = intersectMapTerm(*P1, *P2, J);
if (c > Cmax) {
I = J;
E1 = *P1;
E2 = *P2;
Cmax = c;
}
}
}
}
return Cmax;
}
*/
/**
* Factorize add terms : k1.k2.k4 + k2.k3.k4 -> (k1+k3).k2.k4
* This is a very simple algorithm that factorise only common constants
*/
static void factorizeAddTerm(map<Tree,Tree>& MAT)
{
map<Tree,Tree> INV;
bool run;
int factorCount = 0;
do {
run = false;
// clear INV and copy MAT inverted into INV
INV.clear();
for (map<Tree,Tree>::iterator i = MAT.begin(); i != MAT.end(); i++)
{
Tree f = i->first;
Tree q = i->second;
if (INV.find(q) == INV.end()) {
INV[q] = f;
} else {
INV[q] = simplifyingAdd(INV[q], f);
#ifdef TRACE
fprintf(stderr, "factor of : ");
printSignal(q, stderr);
fprintf(stderr, " is now : ");
printSignal(INV[q], stderr);
fputs("\n", stderr);
#endif
factorCount++;
}
}
// clear MAT and copy INV into MAT inverted
MAT.clear();
for (map<Tree,Tree>::iterator i = INV.begin(); i != INV.end(); i++)
{
Tree f = i->first;
Tree q = i->second;
if (MAT.find(q) == MAT.end()) {
MAT[q] = f;
} else {
MAT[q] = simplifyingAdd(MAT[q], f);
factorCount++;
run = true;
}
}
} while (run);
//
// if (factorCount > 0) {
// fprintf(stderr, "Factorisations achieved : %d\n", factorCount);
// }
}
/*
static void disabledfactorizeAddTerm(map<Tree,Tree>& MAT)
{
list<MT> L;
MT E1;
MT E2;
MT I;
//Cree la liste des facteurs [q.f]
for (map<Tree,Tree>::iterator F = MAT.begin(); F != MAT.end(); F++) {
Tree f = F->first;
Tree q = F->second;
map<Tree,int> M;
collectMulTerms(q, M, f, false);
// YO (21/04/05) : verification supprim� car les diff�ences relev� portaient
// essentiellement sur le type (1.000 != 1)
// if (q != F->second) {
// fprintf(stderr, "WARNING q!=F->second : ");
// printSignal(q, stderr); fprintf(stderr, " != ");
// printSignal(F->second, stderr); fprintf(stderr, "\n");
// }
//
// //assert(q==F->second);
if (!isOne(q)) {
M[q] = 1; // ajoute q aux facteurs
}
L.push_back(M);
}
// calcul l'intersection la plus grande
int cmax = maxIntersect(L, E1, E2, I);
if (cmax > 0) {
//il y a une intersection
fprintf(stderr, "Found intersection of size %d\n", cmax);
#if 0
fprintf(stderr, " between : ");
printSignal ( buildMulTerm(tree(1), E1), stderr );
fprintf(stderr, "\n and : ");
printSignal ( buildMulTerm(tree(1), E2), stderr );
fprintf(stderr, "\n is : ");
printSignal ( buildMulTerm(tree(1), I), stderr );
fprintf(stderr, "\n");
#endif
#if 0
MT R1, R2;
divideMapTerm(E1,I,R1);
divideMapTerm(E2,I,R2);
fprintf(stderr, "factorize 1 : ");
printSignal ( buildMulTerm(tree(1), E1), stderr );
fprintf(stderr, "\n");
fprintf(stderr, " as : ");
printSignal ( buildMulTerm(tree(1), R1), stderr );
fprintf(stderr, " <times> ");
printSignal ( buildMulTerm(tree(1), I), stderr );
fprintf(stderr, "\n\n");
fprintf(stderr, "and factorize 2 : ");
printSignal ( buildMulTerm(tree(1), E2), stderr );
fprintf(stderr, "\n");
fprintf(stderr, " as : ");
printSignal ( buildMulTerm(tree(1), R2), stderr );
fprintf(stderr, " <times> ");
printSignal ( buildMulTerm(tree(1), I), stderr );
fprintf(stderr, "\n");
#endif
}
}
*/
/**
* Compute the normal form of a 1-sample delay term s'.
* The normalisation rules are :
* 0' -> 0 /// INACTIVATE dec07 bug recursion
* (k*s)' -> k*s'
* (s/k)' -> s'/k
* \param s the term to be delayed by 1 sample
* \return the normalized term
*/
Tree normalizeDelay1Term(Tree s)
{
return normalizeFixedDelayTerm(s, tree(1));
}
Tree XXXnormalizeDelay1Term(Tree s)
{
Tree x, y;
if (isZero(s)) {
return s;
} else if (isSigMul(s, x, y)) {
if (getSigOrder(x) < 2) {
return simplify(sigMul(x,normalizeDelay1Term(y)));
} else if (getSigOrder(y) < 2) {
return simplify(sigMul(y,normalizeDelay1Term(x)));
} else {
return sigDelay1(s);
}
} else if (isSigDiv(s, x, y)) {
if (getSigOrder(y) < 2) {
return simplify(sigDiv(normalizeDelay1Term(x),y));
} else {
return sigDelay1(s);
}
} else {
return sigDelay1(s);
}
}
/**
* Compute the normal form of a fixed delay term (s@d).
* The normalisation rules are :
* s@0 -> s
* 0@d -> 0
* (k*s)@d -> k*(s@d)
* (s/k)@d -> (s@d)/k
* (s@n)@m -> s@(n+m)
* Note that the same rules can't be applied to
* + et - becaue the value of the first d samples
* would be wrong. We could also add delays such that
* \param s the term to be delayed
* \param d the value of the delay
* \return the normalized term
*/
Tree normalizeFixedDelayTerm(Tree s, Tree d)
{
Tree x, y, r;
int i;
if (isZero(d) && ! isProj(s, &i, r)) {
return s;
} else if (isZero(s)) {
return s;
} else if (isSigMul(s, x, y)) {
if (getSigOrder(x) < 2) {
return simplify(sigMul(x,normalizeFixedDelayTerm(y,d)));
} else if (getSigOrder(y) < 2) {
return simplify(sigMul(y,normalizeFixedDelayTerm(x,d)));
} else {
return sigFixDelay(s,d);
}
} else if (isSigDiv(s, x, y)) {
if (getSigOrder(y) < 2) {
return simplify(sigDiv(normalizeFixedDelayTerm(x,d),y));
} else {
return sigFixDelay(s,d);
}
} else if (isSigFixDelay(s, x, y)) {
// (x@n)@m = x@(n+m)
// return sigFixDelay(x,tree(tree2int(d)+tree2int(y)));
return normalizeFixedDelayTerm(x,simplify(sigAdd(d,y)));
} else {
return sigFixDelay(s,d);
}
}
|