1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/**
* @file colorize.cpp
* Uses colors to analyze dependencies among sub expressions
*/
#include "colorize.h"
#include "signals.hh"
using namespace std;
// static funvtions needed to implement splitDependance
static int allocateColor(Tree exp); ///< allocate a new unique color for exp
static void colorize(Tree exp, int color); ///< add color information to exp and all its subtrees
static void uncolorize(Tree exp); ///< remove color information
static void listMultiColoredExp(Tree exp, set<Tree>& lst); ///< list multicolored subexpressions of exp
/**
* Analyze a set of expressions to discover its dependencies that is subexpressions
* common to at least two of these expressions
* @param exps set of expressions to analyze
* @param post resulting set of post expressions
* @param pre resulting set of pre expressions
*/
void splitDependance(const set<Tree>& exps, set<Tree>& post, set<Tree>& pre)
{
set<Tree>::const_iterator e;
for (e= exps.begin(); e != exps.end(); e++) {
colorize(*e, allocateColor(*e));
}
pre.clear();
for (e = exps.begin(); e != exps.end(); e++) {
listMultiColoredExp(*e, pre);
}
post.clear();
set_difference(exps.begin(), exps.end(), pre.begin(), pre.end(), inserter(post, post.begin()));
for (e = exps.begin(); e != exps.end(); e++) {
uncolorize(*e);
}
}
//------------------------------------------- IMPLEMENTATION (level 1)-----------------------------------------------------
static void addColor(Tree exp, int color); ///< a color to the colors of exp
static bool hasColor(Tree exp, int color); ///< true if exp is already colored with color
static int colorsCount(Tree exp); ///< returns the number of colors of exp
static void clearColors(Tree exp); ///< remove the color property of exp
/**
* Allocate a unique color (an integer) for an expression.
* by converting its address into an integer
*/
int allocateColor(Tree exp)
{
// return int(exp);
static map<Tree,int> colorMap;
static int nextFreeColor = 1;
int& color = colorMap[exp];
if (!color)
color = nextFreeColor++;
return color;
}
/**
* Add a color to all the expression tree
*/
void colorize(Tree exp, int color)
{
if (! hasColor(exp, color)) {
addColor(exp, color);
vector<Tree> v;
int n = getSubSignals(exp, v, false);
for (int i=0; i<n; i++) colorize(v[i], color);
}
}
/**
* Remove the colors of an expression tree
*/
void uncolorize(Tree exp)
{
if (colorsCount(exp) > 0) {
clearColors(exp);
vector<Tree> v;
int n = getSubSignals(exp, v, false);
for (int i=0; i<n; i++) uncolorize(v[i]);
}
}
/**
* Make a set of the multicolored sub-expressions
*/
void listMultiColoredExp(Tree exp, set<Tree>& lst)
{
assert(colorsCount(exp) > 0);
if (colorsCount(exp) > 1) {
// we have found a multicolored expression
lst.insert(exp);
} else {
// it is a monocolored expression
// we search its subexpressions
vector<Tree> v;
int n = getSubSignals(exp, v, false);
for (int i=0; i<n; i++) {
listMultiColoredExp(v[i], lst);
}
}
}
//------------------------------------------- IMPLEMENTATION (level 2)-----------------------------------------------------
Tree COLORPROPERTY = tree(symbol("ColorProperty"));
/**
* set the color-set property of sig
* @param sig the signal we want to type
* @param t the type of the signal
*/
void setColorProperty(Tree sig, set<int>* colorset)
{
setProperty(sig, COLORPROPERTY, tree((void*)colorset));
}
/**
* retrieve the color-set property of sig
* @param sig the signal we want to know the color-set property
*/
set<int>* getColorProperty(Tree sig)
{
Tree tt;
if (!getProperty(sig, COLORPROPERTY, tt)) {
return 0;
} else {
return (set<int>*)tree2ptr(tt);
}
}
/**
* Add a color to the colorset of exp. Create an empty
* coloset if needed.
* @param sig the signal we want to color
* @param color the color used
*/
void addColor(Tree exp, int color)
{
set<int>* cset = getColorProperty(exp);
if (cset == 0) {
cset = new set<int>();
setColorProperty(exp, cset);
}
cset->insert(color);
}
/**
* Test if exp as color in its colorset
* @param sig the signal we want to test
* @param color the color to test
* @return true if color is member of the colorset of sig
*/
bool hasColor(Tree exp, int color)
{
set<int>* cset = getColorProperty(exp);
if (cset==0) {
return false;
} else {
return cset->find(color) != cset->end();
}
}
/**
* Count the number of colors of exp
* @param exp the expression we want to count the colors
* @return the number of elements in the color set or 0
*/
static int colorsCount(Tree exp)
{
set<int>* cset = getColorProperty(exp);
if (cset==0) {
return 0;
} else {
return cset->size();
}
}
/**
* Count the number of colors of exp
* @param exp the expression we want to count the colors
* @return the number of elements in the color set or 0
*/
static void clearColors(Tree exp)
{
set<int>* cset = getColorProperty(exp);
if (cset != 0) {
cset->clear();
}
}
|