1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
#include <stdio.h>
#include <assert.h>
#include "tlib.hh"
#include "signals.hh"
#include "sigprint.hh"
#include "ppsig.hh"
#include "simplify.hh"
#include "normalize.hh"
#include "sigorderrules.hh"
#include <map>
#include <list>
#include "mterm.hh"
#include "aterm.hh"
#if 0
static void countAddTerm (map<Tree,Tree>& M, Tree t, bool invflag);
static void incTermCount (map<Tree,int>& M, Tree t, bool invflag);
static Tree buildPowTerm (Tree f, int q);
static Tree simplifyingReorganizingMul(Tree t1, Tree t2);
static Tree reorganizingMul(Tree k, Tree t);
static void factorizeAddTerm(map<Tree,Tree>& M);
#endif
#undef TRACE
/**
* Compute the Add-Normal form of a term t.
* \param t the term to be normalized
* \return the normalized term
*/
Tree normalizeAddTerm(Tree t)
{
#ifdef TRACE
cerr << "START normalizeAddTerm : " << ppsig(t) << endl;
#endif
aterm A(t);
#ifdef TRACE
cerr << "ATERM of " << A << endl;
#endif
mterm D = A.greatestDivisor();
while (D.isNotZero() && D.complexity() > 0) {
#ifdef TRACE
cerr << "*** GREAT DIV : " << D << endl;
#endif
A = A.factorize(D);
D = A.greatestDivisor();
}
Tree r = A.normalizedTree();
#ifdef TRACE
cerr << "ATERM of " << A << " --> " << ppsig(r) << endl;
#endif
return r;
}
/**
* Compute the normal form of a 1-sample delay term s'.
* The normalisation rules are :
* 0' -> 0 /// INACTIVATE dec07 bug recursion
* (k*s)' -> k*s'
* (s/k)' -> s'/k
* \param s the term to be delayed by 1 sample
* \return the normalized term
*/
Tree normalizeDelay1Term(Tree s)
{
return normalizeFixedDelayTerm(s, tree(1));
}
/**
* Compute the normal form of a fixed delay term (s@d).
* The normalisation rules are :
* s@0 -> s
* 0@d -> 0
* (k*s)@d -> k*(s@d)
* (s/k)@d -> (s@d)/k
* (s@n)@m -> s@(n+m)
* Note that the same rules can't be applied to
* + et - becaue the value of the first d samples
* would be wrong. We could also add delays such that
* \param s the term to be delayed
* \param d the value of the delay
* \return the normalized term
*/
Tree normalizeFixedDelayTerm(Tree s, Tree d)
{
Tree x, y, r;
int i;
if (isZero(d) && ! isProj(s, &i, r)) {
return s;
} else if (isZero(s)) {
return s;
} else if (isSigMul(s, x, y)) {
if (getSigOrder(x) < 2) {
return /*simplify*/(sigMul(x,normalizeFixedDelayTerm(y,d)));
} else if (getSigOrder(y) < 2) {
return /*simplify*/(sigMul(y,normalizeFixedDelayTerm(x,d)));
} else {
return sigFixDelay(s,d);
}
} else if (isSigDiv(s, x, y)) {
if (getSigOrder(y) < 2) {
return /*simplify*/(sigDiv(normalizeFixedDelayTerm(x,d),y));
} else {
return sigFixDelay(s,d);
}
} else if (isSigFixDelay(s, x, y)) {
// (x@n)@m = x@(n+m)
// return sigFixDelay(x,tree(tree2int(d)+tree2int(y)));
return normalizeFixedDelayTerm(x,simplify(sigAdd(d,y)));
} else {
return sigFixDelay(s,d);
}
}
|