1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
|
//################################ filter.lib ########################################
// A library of filters and of more advanced filter-based sound processor organized
// in 18 sections:
//
// * Basic Filters
// * Comb Filters
// * Direct-Form Digital Filter Sections
// * Direct-Form Second-Order Biquad Sections
// * Ladder/Lattice Digital Filters
// * Useful Special Cases
// * Ladder/Lattice Allpass Filters
// * Digital Filter Sections Specified as Analog Filter Sections
// * Simple Resonator Filters
// * Butterworth Lowpass/Highpass Filters
// * Special Filter-Bank Delay-Equalizing Allpass Filters
// * Elliptic (Cauer) Lowpass Filters
// * Elliptic Highpass Filters
// * Butterworth Bandpass/Bandstop Filters
// * Elliptic Bandpass Filters
// * Parametric Equalizers (Shelf, Peaking)
// * Mth-Octave Filter-Banks
// * Arbritary-Crossover Filter-Banks and Spectrum Analyzers
//
// It should be used using the `fi` environment:
//
// ```
// fi = library("filter.lib");
// process = fi.functionCall;
// ```
//
// Another option is to import `stdfaust.lib` which already contains the `fi`
// environment:
//
// ```
// import("stdfaust.lib");
// process = fi.functionCall;
// ```
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ma = library("math.lib");
ba = library("basic.lib");
de = library("delay.lib");
an = library("analyzer.lib");
declare name "Faust Filter Library";
declare version "2.0";
//===============================Basic Filters============================================
//========================================================================================
//----------------------`zero`--------------------------
// One zero filter. Difference equation: y(n) = x(n) - z * x(n-1).
//
// #### Usage
//
// ```
// _ : zero(z) : _
// ```
//
// Where:
//
// * `z`: location of zero along real axis in z-plane
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/filters/One_Zero.html>
//----------------------------------------------------------
// TODO: author JOS, revised by RM
zero(z) = _ <: _,mem : _,*(z) : -;
//------------------------`pole`---------------------------
// One pole filter. Could also be called a "leaky integrator".
// Difference equation: y(n) = x(n) + p * y(n-1).
//
// #### Usage
//
// ```
// _ : pole(z) : _
// ```
//
// Where:
//
// * `p`: pole location = feedback coefficient
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/filters/One_Pole.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
pole(p) = + ~ *(p);
//----------------------`integrator`--------------------------
// Same as `pole(1)` [implemented separately for block-diagram clarity].
//------------------------------------------------------------
// TODO: author JOS, revised by RM
integrator = + ~ _ ;
//-------------------`dcblockerat`-----------------------
// DC blocker with configurable break frequency.
// The amplitude response is substantially flat above fb,
// and sloped at about +6 dB/octave below fb.
// Derived from the analog transfer function
// H(s) = s / (s + 2*PI*fb)
// by the low-frequency-matching bilinear transform method
// (i.e., the standard frequency-scaling constant 2*SR).
//
// #### Usage
//
// ```
// _ : dcblockerat(fb) : _
// ```
//
// Where:
//
// * `fb`: "break frequency" in Hz, i.e., -3 dB gain frequency.
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
dcblockerat(fb) = *(b0) : zero(1) : pole(p)
with {
wn = ma.PI*fb/ma.SR;
b0 = 1.0 / (1 + wn);
p = (1 - wn) * b0;
};
//----------------------`dcblocker`--------------------------
// DC blocker. Default dc blocker has -3dB point near 35 Hz (at 44.1 kHz)
// and high-frequency gain near 1.0025 (due to no scaling).
// `dcblocker` is as standard Faust function.
//
// #### Usage
//
// ```
// _ : dcblocker : _
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
dcblocker = zero(1) : pole(0.995);
//=======================================Comb Filters=====================================
//========================================================================================
//------`ff_comb`--------
// Feed-Forward Comb Filter. Note that `ff_comb` requires integer delays
// (uses `delay` internally).
// `ff_comb` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : ff_comb(maxdel,intdel,b0,bM) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (integer) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `b0`: gain applied to delay-line input
// * `bM`: gain applied to delay-line output and then summed with input
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html>
//------------------------------------------------------------
// TODO: author JOS
ff_comb (maxdel,M,b0,bM) = _ <: *(b0), bM * de.delay(maxdel,M) : + ;
//------`ff_fcomb`--------
// Feed-Forward Comb Filter. Note that `ff_fcomb` takes floating-point delays
// (uses `fdelay` internally).
// `ff_fcomb` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : ff_fcomb(maxdel,del,b0,bM) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (integer) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `b0`: gain applied to delay-line input
// * `bM`: gain applied to delay-line output and then summed with input
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html>
//------------------------------------------------------------
// TODO: author JOS
ff_fcomb(maxdel,M,b0,bM) = _ <: *(b0), bM * de.fdelay(maxdel,M) : + ;
//-----------`ffcombfilter`-------------------
// Typical special case of `ff_comb()` where: `b0 = 1`.
//------------------------------------------------------------
// TODO: author JOS, revised by RM
ffcombfilter(maxdel,del,g) = ff_comb(maxdel,del,1,g);
//-----------------------`fb_comb`-----------------------
// Feed-Back Comb Filter (integer delay).
//
// #### Usage
//
// ```
// _ : fb_comb(maxdel,intdel,b0,aN) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (integer) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `b0`: gain applied to delay-line input and forwarded to output
// * `aN`: minus the gain applied to delay-line output before summing with the input
// and feeding to the delay line
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
fb_comb (maxdel,N,b0,aN) = (+ <: de.delay(maxdel,N-1),_) ~ *(-aN) : !,*(b0):mem;
//-----------------------`fb_fcomb`-----------------------
// Feed-Back Comb Filter (floating point delay).
//
// #### Usage
//
// ```
// _ : fb_fcomb(maxdel,del,b0,aN) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (integer) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `b0`: gain applied to delay-line input and forwarded to output
// * `aN`: minus the gain applied to delay-line output before summing with the input
// and feeding to the delay line
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
fb_fcomb(maxdel,N,b0,aN) = (+ <: de.fdelay(maxdel,float(N)-1.0),_) ~ *(-aN) : !,*(b0):mem;
//-----------------------`rev1`-----------------------
// Special case of `fb_comb` (`rev1(maxdel,N,g)`).
// The "rev1 section" dates back to the 1960s in computer-music reverberation.
// See the `jcrev` and `brassrev` in `reverb.lib` for usage examples.
//------------------------------------------------------------
// TODO: author JOS
rev1(maxdel,N,g) = fb_comb (maxdel,N,1,-g);
//-----`fbcombfilter` and `ffbcombfilter`------------
// Other special cases of Feed-Back Comb Filter.
//
// #### Usage
//
// ```
// _ : fbcombfilter(maxdel,intdel,g) : _
// _ : ffbcombfilter(maxdel,del,g) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (integer) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `g`: feedback gain
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
fbcombfilter(maxdel,intdel,g) = (+ : de.delay(maxdel,intdel)) ~ *(g);
ffbcombfilter(maxdel,del,g) = (+ : de.fdelay(maxdel,del)) ~ *(g);
//-------------------`allpass_comb`-----------------
// Schroeder Allpass Comb Filter. Note that
//
// ```
// allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);
// ```
//
// which is a direct-form-1 implementation, requiring two delay lines.
// The implementation here is direct-form-2 requiring only one delay line.
//
// #### Usage
//
// ```
// _ : allpass_comb (maxdel,intdel,aN) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (integer) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `aN`: minus the feedback gain
//
// #### References
//
// * <https://ccrma.stanford.edu/~jos/pasp/Allpass_Two_Combs.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Schroeder_Allpass_Sections.html>
// * <https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
allpass_comb(maxdel,N,aN) = (+ <: de.delay(maxdel,N-1),*(aN)) ~ *(-aN) : mem,_ : + ;
//-------------------`allpass_fcomb`-----------------
// Schroeder Allpass Comb Filter. Note that
//
// ```
// allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);
// ```
//
// which is a direct-form-1 implementation, requiring two delay lines.
// The implementation here is direct-form-2 requiring only one delay line.
//
// `allpass_fcomb` is a standard Faust library.
//
// #### Usage
//
// ```
// _ : allpass_comb (maxdel,intdel,aN) : _
// _ : allpass_fcomb(maxdel,del,aN) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (float) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `aN`: minus the feedback gain
//
// #### References
//
// * <https://ccrma.stanford.edu/~jos/pasp/Allpass_Two_Combs.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Schroeder_Allpass_Sections.html>
// * <https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
allpass_fcomb(maxdel,N,aN) = (+ <: de.fdelay(maxdel,N-1),*(aN)) ~ *(-aN) : mem,_ : + ;
//-----------------------`rev2`-----------------------
// Special case of `allpass_comb` (`rev2(maxlen,len,g)`).
// The "rev2 section" dates back to the 1960s in computer-music reverberation.
// See the `jcrev` and `brassrev` in `reverb.lib` for usage examples.
//------------------------------------------------------------
rev2(maxlen,len,g) = allpass_comb(maxlen,len,-g);
//-------------------`allpass_fcomb5` and `allpass_fcomb1a`-----------------
// Same as `allpass_fcomb` but use `fdelay5` and `fdelay1a` internally
// (Interpolation helps - look at an fft of faust2octave on
//
// ```
// `1-1' <: allpass_fcomb(1024,10.5,0.95), allpass_fcomb5(1024,10.5,0.95);`).
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
allpass_fcomb5(maxdel,N,aN) = (+ <: de.fdelay5(maxdel,N-1),*(aN)) ~ *(-aN) : mem,_ : + ;
allpass_fcomb1a(maxdel,N,aN) = (+ <: de.fdelay1a(maxdel,N-1),*(aN)) ~ *(-aN) : mem,_ : + ;
//========================Direct-Form Digital Filter Sections=============================
//========================================================================================
// Specified by transfer-function polynomials B(z)/A(z) as in matlab
//----------------------------`iir`-------------------------------
// Nth-order Infinite-Impulse-Response (IIR) digital filter,
// implemented in terms of the Transfer-Function (TF) coefficients.
// Such filter structures are termed "direct form".
//
// `iir` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : iir(bcoeffs,acoeffs) : _
// ```
//
// Where:
//
// * `order`: filter order (int) = max(#poles,#zeros)
// * `bcoeffs`: (b0,b1,...,b_order) = TF numerator coefficients
// * `acoeffs`: (a1,...,a_order) = TF denominator coeffs (a0=1)
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
iir(bv,av) = ma.sub ~ fir(av) : fir(bv);
//----------------------------- `fir` ---------------------------------
// FIR filter (convolution of FIR filter coefficients with a signal)
//
// #### Usage
//
// ```
// _ : fir(bv) : _
// ```
//
// `fir` is standard Faust function.
//
// Where:
//
// * `bv` = b0,b1,...,bn is a parallel bank of coefficient signals.
//
// #### Note
//
// `bv` is processed using pattern-matching at compile time,
// so it must have this normal form (parallel signals).
//
// #### Example
//
// Smoothing white noise with a five-point moving average:
//
// ```
// bv = .2,.2,.2,.2,.2;
// process = noise : fir(bv);
// ```
//
// Equivalent (note double parens):
//
// ```
// process = noise : fir((.2,.2,.2,.2,.2));
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
//fir(bv) = conv(bv);
fir((b0,bv)) = _ <: *(b0), R(1,bv) :> _ with {
R(n,(bn,bv)) = (@(n):*(bn)), R(n+1,bv);
R(n, bn) = (@(n):*(bn)); };
fir(b0) = *(b0);
//---------------`conv` and `convN`-------------------------------
// Convolution of input signal with given coefficients.
//
// #### Usage
//
// ```
// _ : conv((k1,k2,k3,...,kN)) : _; // Argument = one signal bank
// _ : convN(N,(k1,k2,k3,...)) : _; // Useful when N < count((k1,...))
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
//convN(N,kv,x) = sum(i,N,take(i+1,kv) * x@i); // take() defined in math.lib
convN(N,kv) = sum(i,N, @(i)*take(i+1,kv)); // take() defined in math.lib
//conv(kv,x) = sum(i,count(kv),take(i+1,kv) * x@i); // count() from math.lib
conv(kv) = fir(kv);
//----------------`tf1`, `tf2` and `tf3`----------------------
// tfN = N'th-order direct-form digital filter.
//
// #### Usage
//
// ```
// _ : tf1(b0,b1,a1) : _
// _ : tf2(b0,b1,b2,a1,a2) : _
// _ : tf3(b0,b1,b2,b3,a1,a2,a3) : _
// ```
//
// Where:
//
// * `a`: the poles
// * `b`: the zeros
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/fp/Direct_Form_I.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
tf1(b0,b1,a1) = _ <: *(b0), (mem : *(b1)) :> + ~ *(0-a1);
tf2(b0,b1,b2,a1,a2) = iir((b0,b1,b2),(a1,a2)); // cf. TF2 in music.lib)
// tf2 is a variant of tf22 below with duplicated mems
tf3(b0,b1,b2,b3,a1,a2,a3) = iir((b0,b1,b2,b3),(a1,a2,a3));
// "Original" version for music.lib. This is here for comparison but people should
// use tf2 instead
TF2(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2)
with {
conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x'';
conv2(k0,k1,x) = k0*x + k1*x';
sub(x,y) = y-x;
};
//------------`notchw`--------------
// Simple notch filter based on a biquad (`tf2`).
// `notchw` is a standard Faust function.
//
// #### Usage:
//
// ```
// _ : notchw(width,freq) : _
// ```
//
// Where:
//
// * `width`: "notch width" in Hz (approximate)
// * `freq`: "notch frequency" in Hz
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Phasing_2nd_Order_Allpass_Filters.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
notchw(width,freq) = tf2(b0,b1,b2,a1,a2)
with {
fb = 0.5*width; // First design a dcblockerat(width/2)
wn = PI*fb/SR;
b0db = 1.0 / (1 + wn);
p = (1 - wn) * b0db; // This is our pole radius.
// Now place unit-circle zeros at desired angles:
tn = 2*PI*freq/SR;
a2 = p * p;
a2p1 = 1+a2;
a1 = -a2p1*cos(tn);
b1 = a1;
b0 = 0.5*a2p1;
b2 = b0;
};
//======================Direct-Form Second-Order Biquad Sections==========================
// Direct-Form Second-Order Biquad Sections
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html>
//========================================================================================
//----------------`tf21`, `tf22`, `tf22t` and `tf21t`----------------------
// tfN = N'th-order direct-form digital filter where:
//
// * `tf21` is tf2, direct-form 1
// * `tf22` is tf2, direct-form 2
// * `tf22t` is tf2, direct-form 2 transposed
// * `tf21t` is tf2, direct-form 1 transposed
//
// #### Usage
//
// ```
// _ : tf21(b0,b1,b2,a1,a2) : _
// _ : tf22(b0,b1,b2,a1,a2) : _
// _ : tf22t(b0,b1,b2,a1,a2) : _
// _ : tf21t(b0,b1,b2,a1,a2) : _
// ```
//
// Where:
//
// * `a`: the poles
// * `b`: the zeros
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/fp/Direct_Form_I.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
tf21(b0,b1,b2,a1,a2) = // tf2, direct-form 1:
_ <:(mem<:((mem:*(b2)),*(b1))),*(b0) :>_
: ((_,_,_:>_) ~(_<:*(-a1),(mem:*(-a2))));
tf22(b0,b1,b2,a1,a2) = // tf2, direct-form 2:
_ : (((_,_,_:>_)~*(-a1)<:mem,*(b0))~*(-a2))
: (_<:mem,*(b1)),_ : *(b2),_,_ :> _;
tf22t(b0,b1,b2,a1,a2) = // tf2, direct-form 2 transposed:
_ : (_,_,(_ <: *(b2)',*(b1)',*(b0))
: _,+',_,_ :> _)~*(-a1)~*(-a2) : _;
tf21t(b0,b1,b2,a1,a2) = // tf2, direct-form 1 transposed:
tf22t(1,0,0,a1,a2) : tf22t(b0,b1,b2,0,0); // or write it out if you want
//=========================== Ladder/Lattice Digital Filters =============================
// Ladder and lattice digital filters generally have superior numerical
// properties relative to direct-form digital filters. They can be derived
// from digital waveguide filters, which gives them a physical interpretation.
// #### Reference
//
// * F. Itakura and S. Saito: "Digital Filtering Techniques for Speech Analysis and Synthesis",
// 7th Int. Cong. Acoustics, Budapest, 25 C 1, 1971.
// * J. D. Markel and A. H. Gray: Linear Prediction of Speech, New York: Springer Verlag, 1976.
// * <https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html>
//========================================================================================
//-------------------------------`av2sv`-----------------------------------
// Compute reflection coefficients sv from transfer-function denominator av.
//
// #### Usage
//
// ```
// sv = av2sv(av)
// ```
//
// Where:
//
// * `av`: parallel signal bank `a1,...,aN`
// * `sv`: parallel signal bank `s1,...,sN`
//
// where `ro = ith` reflection coefficient, and
// `ai` = coefficient of `z^(-i)` in the filter
// transfer-function denominator `A(z)`.
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/filters/Step_Down_Procedure.html>
// (where reflection coefficients are denoted by k rather than s).
//------------------------------------------------------------
// TODO: author JOS, revised by RM
av2sv(av) = par(i,M,s(i+1)) with {
M = ba.count(av);
s(m) = sr(M-m+1); // m=1..M
sr(m) = Ari(m,M-m+1); // s_{M-1-m}
Ari(m,i) = ba.take(i+1,Ar(m-1));
//step-down recursion for lattice/ladder digital filters:
Ar(0) = (1,av); // Ar(m) is order M-m (i.e. "reverse-indexed")
Ar(m) = 1,par(i,M-m, (Ari(m,i+1) - sr(m)*Ari(m,M-m-i))/(1-sr(m)*sr(m)));
};
//----------------------------`bvav2nuv`--------------------------------
// Compute lattice tap coefficients from transfer-function coefficients.
//
// #### Usage
//
// ```
// nuv = bvav2nuv(bv,av)
// ```
//
// Where:
//
// * `av`: parallel signal bank `a1,...,aN`
// * `bv`: parallel signal bank `b0,b1,...,aN`
// * `nuv`: parallel signal bank `nu1,...,nuN`
//
// where `nui` is the i'th tap coefficient,
// `bi` is the coefficient of `z^(-i)` in the filter numerator,
// `ai` is the coefficient of `z^(-i)` in the filter denominator
//------------------------------------------------------------
// TODO: author JOS, revised by RM
bvav2nuv(bv,av) = par(m,M+1,nu(m)) with {
M = ba.count(av);
nu(m) = ba.take(m+1,Pr(M-m)); // m=0..M
// lattice/ladder tap parameters:
Pr(0) = bv; // Pr(m) is order M-m, 'r' means "reversed"
Pr(m) = par(i,M-m+1, (Pri(m,i) - nu(M-m+1)*Ari(m,M-m-i+1)));
Pri(m,i) = ba.take(i+1,Pr(m-1));
Ari(m,i) = ba.take(i+1,Ar(m-1));
//step-down recursion for lattice/ladder digital filters:
Ar(0) = (1,av); // Ar(m) is order M-m (recursion index must start at constant)
Ar(m) = 1,par(i,M-m, (Ari(m,i+1) - sr(m)*Ari(m,M-m-i))/(1-sr(m)*sr(m)));
sr(m) = Ari(m,M-m+1); // s_{M-1-m}
};
//--------------------`iir_lat2`-----------------------
// Two-multiply latice IIR filter or arbitrary order.
//
// #### Usage
//
// ```
// _ : iir_lat2(bv,av) : _
// ```
//
// Where:
//
// * bv: zeros as a bank of parallel signals
// * av: poles as a bank of parallel signals
//------------------------------------------------------------
// TODO: author JOS, revised by RM
iir_lat2(bv,av) = allpassnt(M,sv) : sum(i,M+1,*(ba.take(M-i+1,tg)))
with {
M = ba.count(av);
sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients
tg = bvav2nuv(bv,av); // tg = vector of tap gains
};
//-----------------------`allpassnt`--------------------------
// Two-multiply lattice allpass (nested order-1 direct-form-ii allpasses).
//
// #### Usage
//
// ```
// _ : allpassnt(n,sv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflexion coefficients (-1 1)
//------------------------------------------------------------
// TODO: author JOS, revised by RM
allpassnt(0,sv) = _;
allpassnt(n,sv) =
//0: x <: ((+ <: (allpassnt(n-1,sv)),*(s))~(*(-s))) : _',_ :+
_ : ((+ <: (allpassnt(n-1,sv),*(s)))~*(-s)) : fsec(n)
with {
fsec(1) = ro.crossnn(1) : _, (_<:mem,_) : +,_;
fsec(n) = ro.crossn1(n) : _, (_<:mem,_),par(i,n-1,_) : +, par(i,n,_);
innertaps(n) = par(i,n,_);
s = ba.take(n,sv); // reflection coefficient s = sin(theta)
};
//--------------------`iir_kl`-----------------------
// Kelly-Lochbaum ladder IIR filter or arbitrary order.
//
// #### Usage
//
// ```
// _ : iir_kl(bv,av) : _
// ```
//
// Where:
//
// * bv: zeros as a bank of parallel signals
// * av: poles as a bank of parallel signals
//------------------------------------------------------------
// TODO: author JOS, revised by RM
iir_kl(bv,av) = allpassnklt(M,sv) : sum(i,M+1,*(tghr(i)))
with {
M = ba.count(av);
sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients
tg = bvav2nuv(bv,av); // tg = vector of tap gains for 2mul case
tgr(i) = ba.take(M+1-i,tg);
tghr(n) = tgr(n)/pi(n);
pi(0) = 1;
pi(n) = pi(n-1)*(1+ba.take(M-n+1,sv)); // all sign parameters '+'
};
//-----------------------`allpassnklt`--------------------------
// Kelly-Lochbaum ladder allpass.
//
// #### Usage:
//
// ```
// _ : allpassklt(n,sv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflexion coefficients (-1 1)
//------------------------------------------------------------
// TODO: author JOS, revised by RM
allpassnklt(0,sv) = _;
allpassnklt(n,sv) = _ <: *(s),(*(1+s) : (+
: allpassnklt(n-1,sv))~(*(-s))) : fsec(n)
with {
fsec(1) = _, (_<:mem*(1-s),_) : sumandtaps(n);
fsec(n) = _, (_<:mem*(1-s),_), par(i,n-1,_) : sumandtaps(n);
s = ba.take(n,sv);
sumandtaps(n) = +,par(i,n,_);
};
//--------------------`iir_lat1`-----------------------
// One-multiply latice IIR filter or arbitrary order.
//
// #### Usage
//
// ```
// _ : iir_lat1(bv,av) : _
// ```
//
// Where:
//
// * bv: zeros as a bank of parallel signals
// * av: poles as a bank of parallel signals
//------------------------------------------------------------
// TODO: author JOS, revised by RM
iir_lat1(bv,av) = allpassn1mt(M,sv) : sum(i,M+1,*(tghr(i+1)))
with {
M = ba.count(av);
sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients
tg = bvav2nuv(bv,av); // tg = vector of tap gains
tgr(i) = ba.take(M+2-i,tg); // i=1..M+1 (for "takability")
tghr(n) = tgr(n)/pi(n);
pi(1) = 1;
pi(n) = pi(n-1)*(1+ba.take(M-n+2,sv)); // all sign parameters '+'
};
//-----------------------`allpassn1mt`--------------------------
// One-multiply lattice allpass with tap lines.
//
// #### Usage
//
// ```
// _ : allpassn1mt(n,sv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflexion coefficients (-1 1)
//------------------------------------------------------------
// TODO: author JOS, revised by RM
allpassn1mt(0,sv) = _;
allpassn1mt(n,sv)= _ <: _,_ : ((+:*(s) <: _,_),_ : _,+ : ro.crossnn(1)
: allpassn1mt(n-1,sv),_)~(*(-1)) : fsec(n)
with {
//0: fsec(n) = _',_ : +
fsec(1) = ro.crossnn(1) : _, (_<:mem,_) : +,_;
fsec(n) = ro.crossn1(n) : _, (_<:mem,_),par(i,n-1,_) : +, par(i,n,_);
innertaps(n) = par(i,n,_);
s = ba.take(n,sv); // reflection coefficient s = sin(theta)
};
//-------------------------------`iir_nl`-------------------------
// Normalized ladder filter of arbitrary order.
//
// #### Usage
//
// ```
// _ : iir_nl(bv,av) : _
// ```
//
// Where:
//
// * bv: zeros as a bank of parallel signals
// * av: poles as a bank of parallel signals
//
// #### References
//
// * J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York: Springer Verlag, 1976.
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
iir_nl(bv,av) = allpassnnlt(M,sv) : sum(i,M+1,*(tghr(i)))
with {
M = ba.count(av);
sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients
tg = bvav2nuv(bv,av); // tg = vector of tap gains for 2mul case
tgr(i) = ba.take(M+1-i,tg);
tghr(n) = tgr(n)/pi(n);
pi(0) = 1;
s(n) = ba.take(M-n+1,sv); // reflection coefficient = sin(theta)
c(n) = sqrt(max(0,1-s(n)*s(n))); // compiler crashes on sqrt(-)
pi(n) = pi(n-1)*c(n);
};
//-------------------------------`allpassnnlt`-------------------------
// Normalized ladder allpass filter of arbitrary order.
//
// #### Usage:
//
// ```
// _ : allpassnnlt(n,sv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflexion coefficients (-1,1)
//
// #### References
//
// * J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York: Springer Verlag, 1976.
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
allpassnnlt(0,sv) = _;
allpassnnlt(n,scl*(sv)) = allpassnnlt(n,par(i,count(sv),scl*(sv(i))));
allpassnnlt(n,sv) = _ <: *(s),(*(c) : (+
: allpassnnlt(n-1,sv))~(*(-s))) : fsec(n)
with {
fsec(1) = _, (_<:mem*(c),_) : sumandtaps(n);
fsec(n) = _, (_<:mem*(c),_), par(i,n-1,_) : sumandtaps(n);
s = ba.take(n,sv);
c = sqrt(max(0,1-s*s));
sumandtaps(n) = +,par(i,n,_);
};
//=============================Useful Special Cases=======================================
//========================================================================================
//--------------------------------`tf2np`------------------------------------
// Biquad based on a stable second-order Normalized Ladder Filter
// (more robust to modulation than `tf2` and protected against instability).
//
// #### Usage
//
// ```
// _ : tf2np(b0,b1,b2,a1,a2) : _
// ```
//
// Where:
//
// * `a`: the poles
// * `b`: the zeros
//------------------------------------------------------------
// TODO: author JOS, revised by RM
tf2np(b0,b1,b2,a1,a2) = allpassnnlt(M,sv) : sum(i,M+1,*(tghr(i)))
with {
smax = 0.9999; // maximum reflection-coefficient magnitude allowed
s2 = max(-smax, min(smax,a2)); // Project both reflection-coefficients
s1 = max(-smax, min(smax,a1/(1+a2))); // into the defined stability-region.
sv = (s1,s2); // vector of sin(theta) reflection coefficients
M = 2;
nu(2) = b2;
nu(1) = b1 - b2*a1;
nu(0) = (b0-b2*a2) - nu(1)*s1;
tg = (nu(0),nu(1),nu(2));
tgr(i) = ba.take(M+1-i,tg); // vector of tap gains for 2mul case
tghr(n) = tgr(n)/pi(n); // apply pi parameters for NLF case
pi(0) = 1;
s(n) = ba.take(M-n+1,sv);
c(n) = sqrt(1-s(n)*s(n));
pi(n) = pi(n-1)*c(n);
};
//-----------------------------`wgr`---------------------------------
// Second-order transformer-normalized digital waveguide resonator.
//
// #### Usage
//
// ```
// _ : wgr(f,r) : _
// ```
//
// Where:
//
// * `f`: resonance frequency (Hz)
// * `r`: loss factor for exponential decay (set to 1 to make a numerically stable oscillator)
//
// #### References
//
// * <https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
wgr(f,r,x) = (*(G),_<:_,((+:*(C))<:_,_),_:+,_,_:+(x),-) ~ cross : _,*(0-gi)
with {
C = cos(2*ma.PI*f/ma.SR);
gi = sqrt(max(0,(1+C)/(1-C))); // compensate amplitude (only needed when
G = r*(1-1' + gi')/gi; // frequency changes substantially)
cross = _,_ <: !,_,_,!;
};
//-----------------------------`nlf2`--------------------------------
// Second order normalized digital waveguide resonator.
//
// #### Usage
//
// ```
// _ : nlf2(f,r) : _
// ```
//
// Where:
//
// * `f`: resonance frequency (Hz)
// * `r`: loss factor for exponential decay (set to 1 to make a sinusoidal oscillator)
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
nlf2(f,r,x) = ((_<:_,_),(_<:_,_) : (*(s),*(c),*(c),*(0-s)) :>
(*(r),+(x))) ~ cross
with {
th = 2*ma.PI*f/ma.SR;
c = cos(th);
s = sin(th);
cross = _,_ <: !,_,_,!;
};
//------------`apnl`---------------
// Passive Nonlinear Allpass based on Pierce switching springs idea.
// Switch between allpass coefficient `a1` and `a2` at signal zero crossings.
//
// #### Usage
//
// ```
// _ : apnl(a1,a2) : _
// ```
//
// Where:
//
// * `a1` and `a2`: allpass coefficients
//
// #### Reference
//
// * "A Passive Nonlinear Digital Filter Design ..." by John R. Pierce and Scott
// A. Van Duyne, JASA, vol. 101, no. 2, pp. 1120-1126, 1997
//------------------------------------------------------------
// TODO: author JOS and RM
apnl(a1,a2,x) = nonLinFilter
with{
condition = _>0;
nonLinFilter = (x - _ <: _*(condition*a1 + (1-condition)*a2),_')~_ :> +;
};
//============================Ladder/Lattice Allpass Filters==============================
// An allpass filter has gain 1 at every frequency, but variable phase.
// Ladder/lattice allpass filters are specified by reflection coefficients.
// They are defined here as nested allpass filters, hence the names allpassn*.
//
// #### References
//
// * <https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Nested_Allpass_Filters.html>
// * Linear Prediction of Speech, Markel and Gray, Springer Verlag, 1976
//========================================================================================
//---------------`allpassn`-----------------
// Two-multiply lattice - each section is two multiply-adds.
//
// #### Usage:
//
// ```
// _ : allpassn(n,sv) : _
// ```
// #### Where:
//
// * `n`: the order of the filter
// * `sv`: the reflexion coefficients (-1 1)
//
// #### References
//
// * J. O. Smith and R. Michon, "Nonlinear Allpass Ladder Filters in FAUST", in
// Proceedings of the 14th International Conference on Digital Audio Effects
// (DAFx-11), Paris, France, September 19-23, 2011.
//----------------------------------------------
// TODO: author JOS, revised by RM
allpassn(0,sv) = _;
allpassn(n,sv) = _ <: ((+ <: (allpassn(n-1,sv)),*(s))~(*(-s))) : _',_ :+
with { s = ba.take(n,sv); };
//---------------`allpassnn`-----------------
// Normalized form - four multiplies and two adds per section,
// but coefficients can be time varying and nonlinear without
// "parametric amplification" (modulation of signal energy).
//
// #### Usage:
//
// ```
// _ : allpassnn(n,tv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `tv`: the reflexion coefficients (-PI PI)
//----------------------------------------------
// TODO: author JOS, revised by RM
// power-normalized (reflection coefficients s = sin(t)):
allpassnn(0,tv) = _;
allpassnn(n,tv) = _ <: *(s), (*(c) : (+
: allpassnn(n-1,tv))~(*(-s))) : _, mem*c : +
with { c=cos(ba.take(n,tv)); s=sin(ba.take(n,tv)); };
//---------------`allpasskl`-----------------
// Kelly-Lochbaum form - four multiplies and two adds per
// section, but all signals have an immediate physical
// interpretation as traveling pressure waves, etc.
//
// #### Usage:
//
// ```
// _ : allpassnkl(n,sv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflexion coefficients (-1 1)
//----------------------------------------------
// TODO: author JOS, revised by RM
// Kelly-Lochbaum:
allpassnkl(0,sv) = _;
allpassnkl(n,sv) = _ <: *(s),(*(1+s) : (+
: allpassnkl(n-1,sv))~(*(-s))) : _, mem*(1-s) : +
with { s = ba.take(n,sv); };
//---------------`allpass1m`-----------------
// One-multiply form - one multiply and three adds per section.
// Normally the most efficient in special-purpose hardware.
//
// #### Usage:
//
// ```
// _ : allpassn1m(n,sv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflexion coefficients (-1 1)
//----------------------------------------------
// TODO: author JOS, revised by RM
// one-multiply:
allpassn1m(0,sv) = _;
allpassn1m(n,sv)= _ <: _,_ : ((+:*(s) <: _,_),_ : _,+ : cross
: allpassn1m(n-1,sv),_)~(*(-1)) : _',_ : +
with {s = ba.take(n,sv); cross = _,_ <: !,_,_,!; };
//===========Digital Filter Sections Specified as Analog Filter Sections==================
//========================================================================================
//-------------------------`tf2s` and `tf2snp`--------------------------------
// Second-order direct-form digital filter,
// specified by ANALOG transfer-function polynomials B(s)/A(s),
// and a frequency-scaling parameter. Digitization via the
// bilinear transform is built in.
//
// #### Usage
//
// ```
// _ : tf2s(b2,b1,b0,a1,a0,w1) : _
// ```
// Where:
//
// ```
// b2 s^2 + b1 s + b0
// H(s) = --------------------
// s^2 + a1 s + a0
// ```
//
// and `w1` is the desired digital frequency (in radians/second)
// corresponding to analog frequency 1 rad/sec (i.e., `s = j`).
//
// #### Example
//
// A second-order ANALOG Butterworth lowpass filter,
// normalized to have cutoff frequency at 1 rad/sec,
// has transfer function
//
// ```
// 1
// H(s) = -----------------
// s^2 + a1 s + 1
// ```
//
// where `a1 = sqrt(2)`. Therefore, a DIGITAL Butterworth lowpass
// cutting off at `SR/4` is specified as `tf2s(0,0,1,sqrt(2),1,PI*SR/2);`
//
// #### Method
//
// Bilinear transform scaled for exact mapping of w1.
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html>
//----------------------------------------------
// TODO: author JOS, revised by RM
tf2s(b2,b1,b0,a1,a0,w1) = tf2(b0d,b1d,b2d,a1d,a2d)
with {
c = 1/tan(w1*0.5/ma.SR); // bilinear-transform scale-factor
csq = c*c;
d = a0 + a1 * c + csq;
b0d = (b0 + b1 * c + b2 * csq)/d;
b1d = 2 * (b0 - b2 * csq)/d;
b2d = (b0 - b1 * c + b2 * csq)/d;
a1d = 2 * (a0 - csq)/d;
a2d = (a0 - a1*c + csq)/d;
};
// tf2snp = tf2s but using a protected normalized ladder filter for tf2:
tf2snp(b2,b1,b0,a1,a0,w1) = tf2np(b0d,b1d,b2d,a1d,a2d)
with {
c = 1/tan(w1*0.5/ma.SR); // bilinear-transform scale-factor
csq = c*c;
d = a0 + a1 * c + csq;
b0d = (b0 + b1 * c + b2 * csq)/d;
b1d = 2 * (b0 - b2 * csq)/d;
b2d = (b0 - b1 * c + b2 * csq)/d;
a1d = 2 * (a0 - csq)/d;
a2d = (a0 - a1*c + csq)/d;
};
//-----------------------------`tf3slf`-------------------------------
// Analogous to tf2s above, but third order, and using the typical
// low-frequency-matching bilinear-transform constant 2/T ("lf" series)
// instead of the specific-frequency-matching value used in tf2s and tf1s.
// Note the lack of a "w1" argument.
//
// #### Usage
//
// ```
// _ : tf3slf(b3,b2,b1,b0,a3,a2,a1,a0) : _
// ```
//----------------------------------------------
// TODO: author JOS, revised by RM
tf3slf(b3,b2,b1,b0,a3,a2,a1,a0) = tf3(b0d,b1d,b2d,b3d,a1d,a2d,a3d) with {
c = 2.0 * ma.SR; // bilinear-transform scale-factor ("lf" case)
csq = c*c;
cc = csq*c;
// Thank you maxima:
b3d = (b3*c^3-b2*c^2+b1*c-b0)/d;
b2d = (-3*b3*c^3+b2*c^2+b1*c-3*b0)/d;
b1d = (3*b3*c^3+b2*c^2-b1*c-3*b0)/d;
b0d = (-b3*c^3-b2*c^2-b1*c-b0)/d;
a3d = (a3*c^3-a2*c^2+a1*c-a0)/d;
a2d = (-3*a3*c^3+a2*c^2+a1*c-3*a0)/d;
a1d = (3*a3*c^3+a2*c^2-a1*c-3*a0)/d;
d = (-a3*c^3-a2*c^2-a1*c-a0);
};
//-----------------------------`tf1s`--------------------------------
// First-order direct-form digital filter,
// specified by ANALOG transfer-function polynomials B(s)/A(s),
// and a frequency-scaling parameter.
//
// #### Usage
//
// ```
// tf1s(b1,b0,a0,w1)
// ```
// Where:
//
// b1 s + b0
// H(s) = ----------
// s + a0
//
// and `w1` is the desired digital frequency (in radians/second)
// corresponding to analog frequency 1 rad/sec (i.e., `s = j`).
//
// #### Example
// A first-order ANALOG Butterworth lowpass filter,
// normalized to have cutoff frequency at 1 rad/sec,
// has transfer function
//
// 1
// H(s) = -------
// s + 1
//
// so `b0 = a0 = 1` and `b1 = 0`. Therefore, a DIGITAL first-order
// Butterworth lowpass with gain -3dB at `SR/4` is specified as
//
// ```
// tf1s(0,1,1,PI*SR/2); // digital half-band order 1 Butterworth
// ```
//
// #### Method
//
// Bilinear transform scaled for exact mapping of w1.
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html>
//----------------------------------------------
// TODO: author JOS, revised by RM
tf1s(b1,b0,a0,w1) = tf1(b0d,b1d,a1d)
with {
c = 1/tan(w1*0.5/ma.SR); // bilinear-transform scale-factor
d = a0 + c;
b1d = (b0 - b1*c) / d;
b0d = (b0 + b1*c) / d;
a1d = (a0 - c) / d;
};
//-----------------------------`tf2sb`--------------------------------
// Bandpass mapping of `tf2s`: In addition to a frequency-scaling parameter
// `w1` (set to HALF the desired passband width in rad/sec),
// there is a desired center-frequency parameter wc (also in rad/s).
// Thus, `tf2sb` implements a fourth-order digital bandpass filter section
// specified by the coefficients of a second-order analog lowpass prototpe
// section. Such sections can be combined in series for higher orders.
// The order of mappings is (1) frequency scaling (to set lowpass cutoff w1),
// (2) bandpass mapping to wc, then (3) the bilinear transform, with the
// usual scale parameter `2*SR`. Algebra carried out in maxima and pasted here.
//
// #### Usage
//
// ```
// _ : tf2sb(b2,b1,b0,a1,a0,w1,wc) : _
// ```
//----------------------------------------------
// TODO: author JOS, revised by RM
tf2sb(b2,b1,b0,a1,a0,w1,wc) =
iir((b0d/a0d,b1d/a0d,b2d/a0d,b3d/a0d,b4d/a0d),(a1d/a0d,a2d/a0d,a3d/a0d,a4d/a0d)) with {
T = 1.0/float(ma.SR);
b0d = (4*b0*w1^2+8*b2*wc^2)*T^2+8*b1*w1*T+16*b2;
b1d = 4*b2*wc^4*T^4+4*b1*wc^2*w1*T^3-16*b1*w1*T-64*b2;
b2d = 6*b2*wc^4*T^4+(-8*b0*w1^2-16*b2*wc^2)*T^2+96*b2;
b3d = 4*b2*wc^4*T^4-4*b1*wc^2*w1*T^3+16*b1*w1*T-64*b2;
b4d = (b2*wc^4*T^4-2*b1*wc^2*w1*T^3+(4*b0*w1^2+8*b2*wc^2)*T^2-8*b1*w1*T +16*b2)
+ b2*wc^4*T^4+2*b1*wc^2*w1*T^3;
a0d = wc^4*T^4+2*a1*wc^2*w1*T^3+(4*a0*w1^2+8*wc^2)*T^2+8*a1*w1*T+16;
a1d = 4*wc^4*T^4+4*a1*wc^2*w1*T^3-16*a1*w1*T-64;
a2d = 6*wc^4*T^4+(-8*a0*w1^2-16*wc^2)*T^2+96;
a3d = 4*wc^4*T^4-4*a1*wc^2*w1*T^3+16*a1*w1*T-64;
a4d = wc^4*T^4-2*a1*wc^2*w1*T^3+(4*a0*w1^2+8*wc^2)*T^2-8*a1*w1*T+16;
};
//-----------------------------`tf1sb`--------------------------------
// First-to-second-order lowpass-to-bandpass section mapping,
// analogous to tf2sb above.
//
// #### Usage
//
// ```
// _ : tf1sb(b1,b0,a0,w1,wc) : _
// ```
//----------------------------------------------
// TODO: author JOS, revised by RM
tf1sb(b1,b0,a0,w1,wc) = tf2(b0d/a0d,b1d/a0d,b2d/a0d,a1d/a0d,a2d/a0d) with {
T = 1.0/float(ma.SR);
a0d = wc^2*T^2+2*a0*w1*T+4;
b0d = b1*wc^2*T^2 +2*b0*w1*T+4*b1;
b1d = 2*b1*wc^2*T^2-8*b1;
b2d = b1*wc^2*T^2-2*b0*w1*T+4*b1;
a1d = 2*wc^2*T^2-8;
a2d = wc^2*T^2-2*a0*w1*T+4;
};
//==============================Simple Resonator Filters==================================
//========================================================================================
//------------------`resonlp`-----------------
// Simple resonant lowpass filter based on `tf2s` (virtual analog).
// `resonlp` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : resonlp(fc,Q,gain) : _
// _ : resonhp(fc,Q,gain) : _
// _ : resonbp(fc,Q,gain) : _
//
// ```
//
// Where:
//
// * `fc`: center frequency (Hz)
// * `Q`: q
// * `gain`: gain (0-1)
//---------------------------------------------------------------------
// TODO: author JOS, revised by RM
// resonlp = 2nd-order lowpass with corner resonance:
resonlp(fc,Q,gain) = tf2s(b2,b1,b0,a1,a0,wc)
with {
wc = 2*ma.PI*fc;
a1 = 1/Q;
a0 = 1;
b2 = 0;
b1 = 0;
b0 = gain;
};
//------------------`resonhp`-----------------
// Simple resonant highpass filters based on `tf2s` (virtual analog).
// `resonhp` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : resonlp(fc,Q,gain) : _
// _ : resonhp(fc,Q,gain) : _
// _ : resonbp(fc,Q,gain) : _
//
// ```
//
// Where:
//
// * `fc`: center frequency (Hz)
// * `Q`: q
// * `gain`: gain (0-1)
//---------------------------------------------------------------------
// TODO: author JOS, revised by RM
// resonhp = 2nd-order highpass with corner resonance:
resonhp(fc,Q,gain,x) = gain*x-resonlp(fc,Q,gain,x);
//------------------`resonbp`-----------------
// Simple resonant bandpass filters based on `tf2s` (virtual analog).
// `resonbp` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : resonlp(fc,Q,gain) : _
// _ : resonhp(fc,Q,gain) : _
// _ : resonbp(fc,Q,gain) : _
//
// ```
//
// Where:
//
// * `fc`: center frequency (Hz)
// * `Q`: q
// * `gain`: gain (0-1)
//---------------------------------------------------------------------
// TODO: author JOS, revised by RM
// resonbp = 2nd-order bandpass
resonbp(fc,Q,gain) = tf2s(b2,b1,b0,a1,a0,wc)
with {
wc = 2*ma.PI*fc;
a1 = 1/Q;
a0 = 1;
b2 = 0;
b1 = gain;
b0 = 0;
};
//======================Butterworth Lowpass/Highpass Filters==============================
//========================================================================================
//----------------`lowpass`--------------------
// Nth-order Butterworth lowpass filter.
// `lowpass` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : lowpass(N,fc) : _
// ```
//
// Where:
//
// * `N`: filter order (number of poles) [nonnegative constant integer]
// * `fc`: desired cut-off frequency (-3dB frequency) in Hz
//
// #### References
//
// * <https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html>
// * `butter` function in Octave `("[z,p,g] = butter(N,1,'s');")`
//------------------------------
// TODO: author JOS and Orlarey, revised by RM
lowpass(N,fc) = lowpass0_highpass1(0,N,fc);
//----------------`highpass`--------------------
// Nth-order Butterworth highpass filters.
// `highpass` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : highpass(N,fc) : _
// ```
//
// Where:
//
// * `N`: filter order (number of poles) [nonnegative constant integer]
// * `fc`: desired cut-off frequency (-3dB frequency) in Hz
//
// #### References
//
// * <https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html>
// * `butter` function in Octave `("[z,p,g] = butter(N,1,'s');")`
//------------------------------
// TODO: author JOS and Orlarey, revised by RM
highpass(N,fc) = lowpass0_highpass1(1,N,fc);
//-------------`lowpass0_highpass1`--------------
// TODO
//------------------------------
// TODO: author JOS and Orlarey
lowpass0_highpass1(s,N,fc) = lphpr(s,N,N,fc)
with {
lphpr(s,0,N,fc) = _;
lphpr(s,1,N,fc) = tf1s(s,1-s,1,2*ma.PI*fc);
lphpr(s,O,N,fc) = lphpr(s,(O-2),N,fc) : tf2s(s,0,1-s,a1s,1,w1) with {
parity = N % 2;
S = (O-parity)/2; // current section number
a1s = -2*cos((ma.PI)*-1 + (1-parity)*ma.PI/(2*N) + (S-1+parity)*ma.PI/N);
w1 = 2*ma.PI*fc;
};
};
//================Special Filter-Bank Delay-Equalizing Allpass Filters====================
// These special allpass filters are needed by filterbank et al. below.
// They are equivalent to (`lowpass(N,fc)` +|- `highpass(N,fc))/2`, but with
// canceling pole-zero pairs removed (which occurs for odd N).
//========================================================================================
//--------------------`lowpass_plus`|`minus_highpass`----------------
// TODO
//-------------------------------------------------------------------
// TODO: author JOS, revised by RM
highpass_plus_lowpass(1,fc) = _;
highpass_plus_lowpass(3,fc) = tf2s(1,-1,1,1,1,w1) with { w1 = 2*ma.PI*fc; };
highpass_minus_lowpass(3,fc) = tf1s(-1,1,1,w1) with { w1 = 2*ma.PI*fc; };
highpass_plus_lowpass(5,fc) = tf2s(1,-a11,1,a11,1,w1)
with {
a11 = 1.618033988749895;
w1 = 2*ma.PI*fc;
};
highpass_minus_lowpass(5,fc) = tf1s(1,-1,1,w1) : tf2s(1,-a12,1,a12,1,w1)
with {
a12 = 0.618033988749895;
w1 = 2*ma.PI*fc;
};
// Catch-all definitions for generality - even order is done:
highpass_plus_lowpass(N,fc) = switch_odd_even(N%2,N,fc) with {
switch_odd_even(0,N,fc) = highpass_plus_lowpass_even(N,fc);
switch_odd_even(1,N,fc) = highpass_plus_lowpass_odd(N,fc);
};
highpass_minus_lowpass(N,fc) = switch_odd_even(N%2,N,fc) with {
switch_odd_even(0,N,fc) = highpass_minus_lowpass_even(N,fc);
switch_odd_even(1,N,fc) = highpass_minus_lowpass_odd(N,fc);
};
highpass_plus_lowpass_even(N,fc) = highpass(N,fc) + lowpass(N,fc);
highpass_minus_lowpass_even(N,fc) = highpass(N,fc) - lowpass(N,fc);
// FIXME: Rewrite the following, as for orders 3 and 5 above,
// to eliminate pole-zero cancellations:
highpass_plus_lowpass_odd(N,fc) = highpass(N,fc) + lowpass(N,fc);
highpass_minus_lowpass_odd(N,fc) = highpass(N,fc) - lowpass(N,fc);
//==========================Elliptic (Cauer) Lowpass Filters==============================
// Elliptic (Cauer) Lowpass Filters
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Elliptic_filter
// * functions `ncauer` and `ellip` in Octave
//========================================================================================
//-----------------------------`lowpass3e`-----------------------------
// Third-order Elliptic (Cauer) lowpass filter.
//
// #### Usage
//
// ```
// _ : lowpass3e(fc) : _
// ```
//
// Where:
//
// * `fc`: -3dB frequency in Hz
//
// #### Design
//
// For spectral band-slice level display (see `octave_analyzer3e`):
//
// ```
// [z,p,g] = ncauer(Rp,Rs,3); % analog zeros, poles, and gain, where
// Rp = 60 % dB ripple in stopband
// Rs = 0.2 % dB ripple in passband
// ```
//---------------------------------------------------------------------
// TODO: author JOS, revised by RM
lowpass3e(fc) = tf2s(b21,b11,b01,a11,a01,w1) : tf1s(0,1,a02,w1)
with {
a11 = 0.802636764161030; // format long; poly(p(1:2)) % in octave
a01 = 1.412270893774204;
a02 = 0.822445908998816; // poly(p(3)) % in octave
b21 = 0.019809144837789; // poly(z)
b11 = 0;
b01 = 1.161516418982696;
w1 = 2*ma.PI*fc;
};
//-----------------------------`lowpass6e`-----------------------------
// Sixth-order Elliptic/Cauer lowpass filter.
//
// #### Usage
//
// ```
// _ : lowpass6e(fc) : _
// ```
//
// Where:
//
// * `fc`: -3dB frequency in Hz
//
// #### Design
//
// For spectral band-slice level display (see octave_analyzer6e):
//
// ```
// [z,p,g] = ncauer(Rp,Rs,6); % analog zeros, poles, and gain, where
// Rp = 80 % dB ripple in stopband
// Rs = 0.2 % dB ripple in passband
// ```
//----------------------------------------------------------------------
// TODO: author JOS, revised by RM
lowpass6e(fc) =
tf2s(b21,b11,b01,a11,a01,w1) :
tf2s(b22,b12,b02,a12,a02,w1) :
tf2s(b23,b13,b03,a13,a03,w1)
with {
b21 = 0.000099999997055;
a21 = 1;
b11 = 0;
a11 = 0.782413046821645;
b01 = 0.000433227200555;
a01 = 0.245291508706160;
b22 = 1;
a22 = 1;
b12 = 0;
a12 = 0.512478641889141;
b02 = 7.621731298870603;
a02 = 0.689621364484675;
b23 = 1;
a23 = 1;
b13 = 0;
a13 = 0.168404871113589;
b03 = 53.536152954556727;
a03 = 1.069358407707312;
w1 = 2*ma.PI*fc;
};
//=========================Elliptic Highpass Filters======================================
//========================================================================================
//-----------------------------`highpass3e`-----------------------------
// Third-order Elliptic (Cauer) highpass filter. Inversion of `lowpass3e` wrt unit
// circle in s plane (s <- 1/s)
//
// #### Usage
//
// ```
// _ : highpass3e(fc) : _
// ```
//
// Where:
//
// * `fc`: -3dB frequency in Hz
//-------------------------------------------------------------------------
// TODO: author JOS, revised by RM
highpass3e(fc) = tf2s(b01/a01,b11/a01,b21/a01,a11/a01,1/a01,w1) :
tf1s(1/a02,0,1/a02,w1)
with {
a11 = 0.802636764161030;
a01 = 1.412270893774204;
a02 = 0.822445908998816;
b21 = 0.019809144837789;
b11 = 0;
b01 = 1.161516418982696;
w1 = 2*ma.PI*fc;
};
//-----------------------------`highpass6e`-----------------------------
// Sixth-order Elliptic/Cauer highpass filter. Inversion of lowpass3e wrt unit
// circle in s plane (s <- 1/s)
//
// #### Usage
//
// ```
// _ : highpass6e(fc) : _
// ```
//
// Where:
//
// * `fc`: -3dB frequency in Hz
//-------------------------------------------------------------------------
// TODO: author JOS, revised by RM
highpass6e(fc) =
tf2s(b01/a01,b11/a01,b21/a01,a11/a01,1/a01,w1) :
tf2s(b02/a02,b12/a02,b22/a02,a12/a02,1/a02,w1) :
tf2s(b03/a03,b13/a03,b23/a03,a13/a03,1/a03,w1)
with {
b21 = 0.000099999997055;
a21 = 1;
b11 = 0;
a11 = 0.782413046821645;
b01 = 0.000433227200555;
a01 = 0.245291508706160;
b22 = 1;
a22 = 1;
b12 = 0;
a12 = 0.512478641889141;
b02 = 7.621731298870603;
a02 = 0.689621364484675;
b23 = 1;
a23 = 1;
b13 = 0;
a13 = 0.168404871113589;
b03 = 53.536152954556727;
a03 = 1.069358407707312;
w1 = 2*ma.PI*fc;
};
//========================Butterworth Bandpass/Bandstop Filters===========================
//========================================================================================
//--------------------`bandpass`----------------
// Order 2*Nh Butterworth bandpass filter made using the transformation
// `s <- s + wc^2/s` on `lowpass(Nh)`, where `wc` is the desired bandpass center
// frequency. The `lowpass(Nh)` cutoff `w1` is half the desired bandpass width.
// `bandpass` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : bandpass(Nh,fl,fu) : _
// ```
//
// Where:
//
// * `Nh`: HALF the desired bandpass order (which is therefore even)
// * `fl`: lower -3dB frequency in Hz
// * `fu`: upper -3dB frequency in Hz
// Thus, the passband width is `fu-fl`,
// and its center frequency is `(fl+fu)/2`.
//
// #### Reference
//
// <http://cnx.org/content/m16913/latest/>
//-------------------------------------------------------------------------
// TODO: author JOS, revised by RM
bandpass(Nh,fl,fu) = bandpass0_bandstop1(0,Nh,fl,fu);
//--------------------`bandstop`----------------
// Order 2*Nh Butterworth bandstop filter made using the transformation
// `s <- s + wc^2/s` on `highpass(Nh)`, where `wc` is the desired bandpass center
// frequency. The `highpass(Nh)` cutoff `w1` is half the desired bandpass width.
// `bandstop` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : bandstop(Nh,fl,fu) : _
// ```
// Where:
//
// * `Nh`: HALF the desired bandstop order (which is therefore even)
// * `fl`: lower -3dB frequency in Hz
// * `fu`: upper -3dB frequency in Hz
// Thus, the passband (stopband) width is `fu-fl`,
// and its center frequency is `(fl+fu)/2`.
//
// #### Reference
//
// <http://cnx.org/content/m16913/latest/>
//-------------------------------------------------------------------------
// TODO: author JOS, revised by RM
bandstop(Nh,fl,fu) = bandpass0_bandstop1(1,Nh,fl,fu);
bandpass0_bandstop1(s,Nh,fl,fu) = bpbsr(s,Nh,Nh,fl,fu)
with {
wl = 2*ma.PI*fl; // digital (z-plane) lower passband edge
wu = 2*ma.PI*fu; // digital (z-plane) upper passband edge
c = 2.0*ma.SR; // bilinear transform scaling used in tf2sb, tf1sb
wla = c*tan(wl/c); // analog (s-splane) lower cutoff
wua = c*tan(wu/c); // analog (s-splane) upper cutoff
wc = sqrt(wla*wua); // s-plane center frequency
w1 = wua - wc^2/wua; // s-plane lowpass prototype cutoff
bpbsr(s,0,Nh,fl,fu) = _;
bpbsr(s,1,Nh,fl,fu) = tf1sb(s,1-s,1,w1,wc);
bpbsr(s,O,Nh,fl,fu) = bpbsr(s,O-2,Nh,fl,fu) : tf2sb(s,0,(1-s),a1s,1,w1,wc)
with {
parity = Nh % 2;
S = (O-parity)/2; // current section number
a1s = -2*cos(-1*ma.PI + (1-parity)*ma.PI/(2*Nh) + (S-1+parity)*ma.PI/Nh);
};
};
//===========================Elliptic Bandpass Filters====================================
//========================================================================================
//---------------------`bandpass6e`-----------------------------
// Order 12 elliptic bandpass filter analogous to `bandpass(6)`.
//--------------------------------------------------------------
// TODO: author JOS, revised by RM
bandpass6e(fl,fu) = tf2sb(b21,b11,b01,a11,a01,w1,wc) : tf1sb(0,1,a02,w1,wc)
with {
a11 = 0.802636764161030; // In octave: format long; poly(p(1:2))
a01 = 1.412270893774204;
a02 = 0.822445908998816; // poly(p(3))
b21 = 0.019809144837789; // poly(z)
b11 = 0;
b01 = 1.161516418982696;
wl = 2*ma.PI*fl; // digital (z-plane) lower passband edge
wu = 2*ma.PI*fu; // digital (z-plane) upper passband edge
c = 2.0*ma.SR; // bilinear transform scaling used in tf2sb, tf1sb
wla = c*tan(wl/c); // analog (s-splane) lower cutoff
wua = c*tan(wu/c); // analog (s-splane) upper cutoff
wc = sqrt(wla*wua); // s-plane center frequency
w1 = wua - wc^2/wua; // s-plane lowpass cutoff
};
//----------------------`bandpass12e`---------------------------
// Order 24 elliptic bandpass filter analogous to `bandpass(6)`.
//--------------------------------------------------------------
// TODO: author JOS, revised by RM
bandpass12e(fl,fu) =
tf2sb(b21,b11,b01,a11,a01,w1,wc) :
tf2sb(b22,b12,b02,a12,a02,w1,wc) :
tf2sb(b23,b13,b03,a13,a03,w1,wc)
with { // octave script output:
b21 = 0.000099999997055;
a21 = 1;
b11 = 0;
a11 = 0.782413046821645;
b01 = 0.000433227200555;
a01 = 0.245291508706160;
b22 = 1;
a22 = 1;
b12 = 0;
a12 = 0.512478641889141;
b02 = 7.621731298870603;
a02 = 0.689621364484675;
b23 = 1;
a23 = 1;
b13 = 0;
a13 = 0.168404871113589;
b03 = 53.536152954556727;
a03 = 1.069358407707312;
wl = 2*ma.PI*fl; // digital (z-plane) lower passband edge
wu = 2*ma.PI*fu; // digital (z-plane) upper passband edge
c = 2.0*ma.SR; // bilinear transform scaling used in tf2sb, tf1sb
wla = c*tan(wl/c); // analog (s-splane) lower cutoff
wua = c*tan(wu/c); // analog (s-splane) upper cutoff
wc = sqrt(wla*wua); // s-plane center frequency
w1 = wua - wc^2/wua; // s-plane lowpass cutoff
};
//=================Parametric Equalizers (Shelf, Peaking)=================================
// Parametric Equalizers (Shelf, Peaking)
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Equalization>
// * <http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt>
// * Digital Audio Signal Processing, Udo Zolzer, Wiley, 1999, p. 124
// * https://ccrma.stanford.edu/~jos/filters/Low_High_Shelving_Filters.html>
// * https://ccrma.stanford.edu/~jos/filters/Peaking_Equalizers.html>
// * maxmsp.lib in the Faust distribution
// * bandfilter.dsp in the faust2pd distribution
//========================================================================================
//----------------------`low_shelf`----------------------
// First-order "low shelf" filter (gain boost|cut between dc and some frequency)
// `low_shelf` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : lowshelf(N,L0,fx) : _
// _ : low_shelf(L0,fx) : _ // default case (order 3)
// _ : lowshelf_other_freq(N,L0,fx) : _
// ```
//
// Where:
// * `N`: filter order 1, 3, 5, ... (odd only). (default should be 3)
// * `L0`: desired level (dB) between dc and fx (boost `L0>0` or cut `L0<0`)
// * `fx`: -3dB frequency of lowpass band (`L0>0`) or upper band (`L0<0`)
// (see "SHELF SHAPE" below).
//
// The gain at SR/2 is constrained to be 1.
// The generalization to arbitrary odd orders is based on the well known
// fact that odd-order Butterworth band-splits are allpass-complementary
// (see filterbank documentation below for references).
//
// #### Shelf Shape
// The magnitude frequency response is approximately piecewise-linear
// on a log-log plot ("BODE PLOT"). The Bode "stick diagram" approximation
// L(lf) is easy to state in dB versus dB-frequency lf = dB(f):
//
// * L0 > 0:
// * L(lf) = L0, f between 0 and fx = 1st corner frequency;
// * L(lf) = L0 - N * (lf - lfx), f between fx and f2 = 2nd corner frequency;
// * L(lf) = 0, lf > lf2.
// * lf2 = lfx + L0/N = dB-frequency at which level gets back to 0 dB.
// * L0 < 0:
// * L(lf) = L0, f between 0 and f1 = 1st corner frequency;
// * L(lf) = - N * (lfx - lf), f between f1 and lfx = 2nd corner frequency;
// * L(lf) = 0, lf > lfx.
// * lf1 = lfx + L0/N = dB-frequency at which level goes up from L0.
//
// See `lowshelf_other_freq`.
//--------------------------------------------------------------
// TODO: author JOS, revised by RM
lowshelf(N,L0,fx) = filterbank(N,(fx)) : _, *(ba.db2linear(L0)) :> _;
// Special cases and optimization:
low_shelf = lowshelf(3); // default = 3rd order Butterworth
low_shelf1(L0,fx,x) = x + (ba.db2linear(L0)-1)*lowpass(1,fx,x); // optimized
low_shelf1_l(G0,fx,x) = x + (G0-1)*lowpass(1,fx,x); // optimized
lowshelf_other_freq(N, L0, fx) = ba.db2linear(ba.linear2db(fx) + L0/N); // convenience
//-------------`high_shelf`--------------
// First-order "high shelf" filter (gain boost|cut above some frequency).
// `high_shelf` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : highshelf(N,Lpi,fx) : _
// _ : high_shelf(L0,fx) : _ // default case (order 3)
// _ : highshelf_other_freq(N,Lpi,fx) : _
// ```
//
// Where:
//
// * `N`: filter order 1, 3, 5, ... (odd only).
// * `Lpi`: desired level (dB) between fx and SR/2 (boost Lpi>0 or cut Lpi<0)
// * `fx`: -3dB frequency of highpass band (L0>0) or lower band (L0<0)
// (Use highshelf_other_freq() below to find the other one.)
//
// The gain at dc is constrained to be 1.
// See `lowshelf` documentation above for more details on shelf shape.
//--------------------------------------------------------------
// TODO: author JOS, revised by RM
highshelf(N,Lpi,fx) = filterbank(N,(fx)) : *(ba.db2linear(Lpi)), _ :> _;
// Special cases and optimization:
high_shelf = highshelf(3); // default = 3rd order Butterworth
high_shelf1(Lpi,fx,x) = x + (ba.db2linear(Lpi)-1)*highpass(1,fx,x); // optimized
high_shelf1_l(Gpi,fx,x) = x + (Gpi-1)*highpass(1,fx,x); //optimized
// shelf transitions between frequency fx and this one:
highshelf_other_freq(N, Lpi, fx) = ba.db2linear(ba.linear2db(fx) - Lpi/N);
//-------------------`peak_eq`------------------------------
// Second order "peaking equalizer" section (gain boost or cut near some frequency)
// Also called a "parametric equalizer" section.
// `peak_eq` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : peak_eq(Lfx,fx,B) : _;
// ```
//
// Where:
//
// * `Lfx`: level (dB) at fx (boost Lfx>0 or cut Lfx<0)
// * `fx`: peak frequency (Hz)
// * `B`: bandwidth (B) of peak in Hz
//--------------------------------------------------------------
// TODO: author JOS, revised by RM
peak_eq(Lfx,fx,B) = tf2s(1,b1s,1,a1s,1,wx) with {
T = float(1.0/ma.SR);
Bw = B*T/sin(wx*T); // prewarp s-bandwidth for more accuracy in z-plane
a1 = ma.PI*Bw;
b1 = g*a1;
g = ba.db2linear(abs(Lfx));
b1s = select2(Lfx>0,a1,b1); // When Lfx>0, pole dominates bandwidth
a1s = select2(Lfx>0,b1,a1); // When Lfx<0, zero dominates
wx = 2*ma.PI*fx;
};
//--------------------`peak_eq_cq`----------------------------
// Constant-Q second order peaking equalizer section.
//
// #### Usage
//
// ```
// _ : peak_eq_cq(Lfx,fx,Q) : _;
// ```
//
// Where:
//
// * `Lfx`: level (dB) at fx
// * `fx`: boost or cut frequency (Hz)
// * `Q`: "Quality factor" = fx/B where B = bandwidth of peak in Hz
//------------------------------------------------------------
// TODO: author JOS, revised by RM
peak_eq_cq(Lfx,fx,Q) = peak_eq(Lfx,fx,fx/Q);
//-------------------`peak_eq_rm`--------------------------
// Regalia-Mitra second order peaking equalizer section
//
// #### Usage
//
// ```
// _ : peak_eq_rm(Lfx,fx,tanPiBT) : _;
// ```
//
// Where:
//
// * `Lfx`: level (dB) at fx
// * `fx`: boost or cut frequency (Hz)
// * `tanPiBT`: `tan(PI*B/SR)`, where B = -3dB bandwidth (Hz) when 10^(Lfx/20) = 0
// ~ PI*B/SR for narrow bandwidths B
//
// #### Reference
//
// P.A. Regalia, S.K. Mitra, and P.P. Vaidyanathan,
// "The Digital All-Pass Filter: A Versatile Signal Processing Building Block"
// Proceedings of the IEEE, 76(1):19-37, Jan. 1988. (See pp. 29-30.)
//------------------------------------------------------------
// TODO: author JOS, revised by RM
peak_eq_rm(Lfx,fx,tanPiBT) = _ <: _,A,_ : +,- : *(0.5),*(K/2.0) : + with {
A = tf2(k2, k1*(1+k2), 1, k1*(1+k2), k2) <: _,_; // allpass
k1 = 0.0 - cos(2.0*ma.PI*fx/ma.SR);
k2 = (1.0 - tanPiBT)/(1.0 + tanPiBT);
K = ba.db2linear(Lfx);
};
//---------------------`spectral_tilt`-------------------------
// Spectral tilt filter, providing an arbitrary spectral rolloff factor
// alpha in (-1,1), where
// -1 corresponds to one pole (-6 dB per octave), and
// +1 corresponds to one zero (+6 dB per octave).
// In other words, alpha is the slope of the ln magnitude versus ln frequency.
// For a "pinking filter" (e.g., to generate 1/f noise from white noise),
// set alpha to -1/2.
//
// #### Usage
//
// ```
// _ : spectral_tilt(N,f0,bw,alpha) : _
// ```
// Where:
//
// * `N`: desired integer filter order (fixed at compile time)
// * `f0`: lower frequency limit for desired roll-off band
// * `bw`: bandwidth of desired roll-off band
// * `alpha`: slope of roll-off desired in nepers per neper
// (ln mag / ln radian freq)
//
// #### Examples
// See `spectral_tilt_demo`.
//
// #### Reference
// Link to appear here when write up is done
//------------------------------------------------------------
// TODO: author JOS, revised by RM
spectral_tilt(N,f0,bw,alpha) = seq(i,N,sec(i)) with {
sec(i) = g * tf1s(b1,b0,a0,1) with {
g = a0/b0; // unity dc-gain scaling
b1 = 1.0;
b0 = mzh(i);
a0 = mph(i);
mzh(i) = prewarp(mz(i),ma.SR,w0); // prewarping for bilinear transform
mph(i) = prewarp(mp(i),ma.SR,w0);
prewarp(w,SR,wp) = wp * tan(w*T/2) / tan(wp*T/2) with { T = 1/ma.SR; };
mz(i) = w0 * r ^ (-alpha+i); // minus zero i in s plane
mp(i) = w0 * r ^ i; // minus pole i in s plane
w0 = 2 * ma.PI * f0; // radian frequency of first pole
f1 = f0 + bw; // upper band limit
r = (f1/f0)^(1.0/float(N-1)); // pole ratio (2 => octave spacing)
};
};
//----------------------`levelfilter`----------------------
// Dynamic level lowpass filter.
// `levelfilter` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : levelfilter(L,freq) : _
// ```
//
// Where:
//
// * `L`: desired level (in dB) at Nyquist limit (SR/2), e.g., -60
// * `freq`: corner frequency (-3dB point) usually set to fundamental freq
// * `N`: Number of filters in series where L = L/N
//
// #### Reference
//
// <https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
levelfilter(L,freq,x) = (L * L0 * x) + ((1.0-L) * lp2out(x))
with {
L0 = pow(L,1/3);
Lw = ma.PI*freq/ma.SR; // = w1 T / 2
Lgain = Lw / (1.0 + Lw);
Lpole2 = (1.0 - Lw) / (1.0 + Lw);
lp2out = *(Lgain) : + ~ *(Lpole2);
};
//----------------------`levelfilterN`----------------------
// Dynamic level lowpass filter.
//
// #### Usage
//
// ```
// _ : levelfilterN(N,freq,L) : _
// ```
//
// Where:
//
// * `L`: desired level (in dB) at Nyquist limit (SR/2), e.g., -60
// * `freq`: corner frequency (-3dB point) usually set to fundamental freq
// * `N`: Number of filters in series where L = L/N
//
// #### Reference
//
// <https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
levelfilterN(N,freq,L) = seq(i,N,levelfilter((L/N),freq));
//=================================Mth-Octave Filter-Banks================================
// Mth-octave filter-banks split the input signal into a bank of parallel signals, one
// for each spectral band. They are related to the Mth-Octave Spectrum-Analyzers in
// `analysis.lib`.
// The documentation of this library contains more details about the implementation.
// The parameters are:
//
// * `M`: number of band-slices per octave (>1)
// * `N`: total number of bands (>2)
// * `ftop`: upper bandlimit of the Mth-octave bands (<SR/2)
//
// In addition to the Mth-octave output signals, there is a highpass signal
// containing frequencies from ftop to SR/2, and a "dc band" lowpass signal
// containing frequencies from 0 (dc) up to the start of the Mth-octave bands.
// Thus, the N output signals are
//
// ```
// highpass(ftop), MthOctaveBands(M,N-2,ftop), dcBand(ftop*2^(-M*(N-1)))
// ```
//
// A Filter-Bank is defined here as a signal bandsplitter having the
// property that summing its output signals gives an allpass-filtered
// version of the filter-bank input signal. A more conventional term for
// this is an "allpass-complementary filter bank". If the allpass filter
// is a pure delay (and possible scaling), the filter bank is said to be
// a "perfect-reconstruction filter bank" (see Vaidyanathan-1993 cited
// below for details). A "graphic equalizer", in which band signals
// are scaled by gains and summed, should be based on a filter bank.
//
// The filter-banks below are implemented as Butterworth or Elliptic
// spectrum-analyzers followed by delay equalizers that make them
// allpass-complementary.
//
// #### Increasing Channel Isolation
//
// Go to higher filter orders - see Regalia et al. or Vaidyanathan (cited
// below) regarding the construction of more aggressive recursive
// filter-banks using elliptic or Chebyshev prototype filters.
//
// #### References
//
// * "Tree-structured complementary filter banks using all-pass sections",
// Regalia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484, Dec. 1987
// * "Multirate Systems and Filter Banks", P. Vaidyanathan, Prentice-Hall, 1993
// * Elementary filter theory: https://ccrma.stanford.edu/~jos/filters/
//========================================================================================
//------------------------`mth_octave_filterbank[n]`-------------------------
// Allpass-complementary filter banks based on Butterworth band-splitting.
// For Butterworth band-splits, the needed delay equalizer is easily found.
//
// #### Usage
//
// ```
// _ : mth_octave_filterbank(O,M,ftop,N) : par(i,N,_); // Oth-order
// _ : mth_octave_filterbank_alt(O,M,ftop,N) : par(i,N,_); // dc-inverted version
// ```
//
// Also for convenience:
//
// ```
// _ : mth_octave_filterbank3(M,ftop,N) : par(i,N,_); // 3d-order Butterworth
// _ : mth_octave_filterbank5(M,ftop,N) : par(i,N,_); // 5th-roder Butterworth
// mth_octave_filterbank_default = mth_octave_analyzer6e;
// ```
//
// Where:
//
// * `O`: order of filter used to split each frequency band into two
// * `M`: number of band-slices per octave
// * `ftop`: highest band-split crossover frequency (e.g., 20 kHz)
// * `N`: total number of bands (including dc and Nyquist)
//------------------------------------------------------------
// TODO: author JOS and Orlarey, revised by RM
mth_octave_filterbank(O,M,ftop,N) =
an.mth_octave_analyzer(O,M,ftop,N) :
delayeq(N) with {
fc(n) = ftop * 2^(float(n-N+1)/float(M)); // -3dB crossover frequencies
ap(n) = highpass_plus_lowpass(O,fc(n)); // delay-equalizing allpass
delayeq(N) = par(i,N-2,apchain(i+1)), _, _;
apchain(i) = seq(j,N-1-i,ap(j+1));
};
// dc-inverted version. This reduces the delay-equalizer order for odd O.
// Negating the input signal makes the dc band noninverting
// and all higher bands sign-inverted (if preferred).
mth_octave_filterbank_alt(O,M,ftop,N) =
an.mth_octave_analyzer(O,M,ftop,N) : delayeqi(O,N) with {
fc(n) = ftop * 2^(float(n-N+1)/float(M)); // -3dB crossover frequencies
ap(n) = highpass_minus_lowpass(O,fc(n)); // half the order of 'plus' case
delayeqi(N) = par(i,N-2,apchain(i+1)), _, *(-1.0);
apchain(i) = seq(j,N-1-i,ap(j+1));
};
// Note that even-order cases require complex coefficients.
// See Vaidyanathan 1993 and papers cited there for more info.
mth_octave_filterbank3(M,ftop,N) = mth_octave_filterbank_alt(3,M,ftop,N);
mth_octave_filterbank5(M,ftop,N) = mth_octave_filterbank(5,M,ftop,N);
mth_octave_filterbank_default = mth_octave_filterbank5;
//===============Arbritary-Crossover Filter-Banks and Spectrum Analyzers==================
// These are similar to the Mth-octave analyzers above, except that the
// band-split frequencies are passed explicitly as arguments.
//========================================================================================
// ACKNOWLEDGMENT
// Technique for processing a variable number of signal arguments due
// to Yann Orlarey (as is the entire Faust framework!)
//---------------`filterbank`--------------------------
// Filter bank.
// `filterbank` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : filterbank (O,freqs) : par(i,N,_); // Butterworth band-splits
// ```
// Where:
//
// * `O`: band-split filter order (ODD integer required for filterbank[i])
// * `freqs`: (fc1,fc2,...,fcNs) [in numerically ascending order], where
// Ns=N-1 is the number of octave band-splits
// (total number of bands N=Ns+1).
//
// If frequencies are listed explicitly as arguments, enclose them in parens:
//
// ```
// _ : filterbank(3,(fc1,fc2)) : _,_,_
// ```
//---------------------------------------------------
// TODO: author JOS, revised by RM
filterbank(O,lfreqs) = an.analyzer(O,lfreqs) : delayeq(nb) with
{
nb = ba.count(lfreqs);
fc(n) = ba.take(n, lfreqs);
ap(n) = highpass_plus_lowpass(O,fc(n));
delayeq(1) = _,_; // par(i,0,...) does not fly
delayeq(nb) = par(i,nb-1,apchain(nb-1-i)),_,_;
apchain(0) = _;
apchain(i) = ap(i) : apchain(i-1);
};
//-----------------`filterbanki`----------------------
// Inverted-dc filter bank.
//
// #### Usage
//
// ```
// _ : filterbanki(O,freqs) : par(i,N,_); // Inverted-dc version
// ```
//
// Where:
//
// * `O`: band-split filter order (ODD integer required for `filterbank[i]`)
// * `freqs`: (fc1,fc2,...,fcNs) [in numerically ascending order], where
// Ns=N-1 is the number of octave band-splits
// (total number of bands N=Ns+1).
//
// If frequencies are listed explicitly as arguments, enclose them in parens:
//
// ```
// _ : filterbanki(3,(fc1,fc2)) : _,_,_
// ```
//---------------------------------------------------
// TODO: author JOS, revised by RM
filterbanki(O,lfreqs) = _ <: bsplit(nb) with
{
nb = ba.count(lfreqs);
fc(n) = ba.take(n, lfreqs);
lp(n) = lowpass(O,fc(n));
hp(n) = highpass(O,fc(n));
ap(n) = highpass_minus_lowpass(O,fc(n));
bsplit(0) = *(-1.0);
bsplit(i) = (hp(i) : delayeq(i-1)), (lp(i) <: bsplit(i-1));
delayeq(0) = _; // moving the *(-1) here inverts all outputs BUT dc
delayeq(i) = ap(i) : delayeq(i-1);
};
|