1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/************************************************************************
************************************************************************
FAUST compiler
Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
************************************************************************/
#include <stdio.h>
#include <list>
#include <map>
#include "aterm.hh"
#include "exception.hh"
#include "mterm.hh"
#include "normalize.hh"
#include "ppsig.hh"
#include "signals.hh"
#include "sigorderrules.hh"
#include "sigprint.hh"
#include "simplify.hh"
#include "tlib.hh"
#if 0
static void countAddTerm (map<Tree,Tree>& M, Tree t, bool invflag);
static void incTermCount (map<Tree,int>& M, Tree t, bool invflag);
static Tree buildPowTerm (Tree f, int q);
static Tree simplifyingReorganizingMul(Tree t1, Tree t2);
static Tree reorganizingMul(Tree k, Tree t);
static void factorizeAddTerm(map<Tree,Tree>& M);
#endif
#undef TRACE
/**
* Compute the Add-Normal form of a term t.
* \param t the term to be normalized
* \return the normalized term
*/
Tree normalizeAddTerm(Tree t)
{
#ifdef TRACE
cerr << "START normalizeAddTerm : " << ppsig(t) << endl;
#endif
aterm A(t);
#ifdef TRACE
cerr << "ATERM of " << A << endl;
#endif
mterm D = A.greatestDivisor();
while (D.isNotZero() && D.complexity() > 0) {
#ifdef TRACE
cerr << "*** GREAT DIV : " << D << endl;
#endif
A = A.factorize(D);
D = A.greatestDivisor();
}
Tree r = A.normalizedTree();
#ifdef TRACE
cerr << "ATERM of " << A << " --> " << ppsig(r) << endl;
#endif
return r;
}
/**
* Compute the normal form of a 1-sample delay term s'.
* The normalisation rules are :
* 0' -> 0 /// INACTIVATE dec07 bug recursion
* (k*s)' -> k*s'
* (s/k)' -> s'/k
* \param s the term to be delayed by 1 sample
* \return the normalized term
*/
Tree normalizeDelay1Term(Tree s)
{
return normalizeFixedDelayTerm(s, tree(1));
}
/**
* Compute the normal form of a fixed delay term (s@d).
* The normalisation rules are :
* s@0 -> s
* 0@d -> 0
* (k*s)@d -> k*(s@d)
* (s/k)@d -> (s@d)/k
* (s@n)@m -> s@(n+m) and n is constant
* Note that the same rules can't be applied to
* + and - because the value of the first d samples
* would be wrong.
* \param s the term to be delayed
* \param d the value of the delay
* \return the normalized term
*/
Tree normalizeFixedDelayTerm(Tree s, Tree d)
{
Tree x, y, r;
int i;
if (isZero(d)) {
if (isProj(s, &i, r)) {
return sigFixDelay(s, d);
} else {
return s;
}
} else if (isZero(s)) {
return s;
} else if (isSigMul(s, x, y)) {
if (getSigOrder(x) < 2) {
return /*simplify*/ (sigMul(x, normalizeFixedDelayTerm(y, d)));
} else if (getSigOrder(y) < 2) {
return /*simplify*/ (sigMul(y, normalizeFixedDelayTerm(x, d)));
} else {
return sigFixDelay(s, d);
}
} else if (isSigDiv(s, x, y)) {
if (getSigOrder(y) < 2) {
return /*simplify*/ (sigDiv(normalizeFixedDelayTerm(x, d), y));
} else {
return sigFixDelay(s, d);
}
} else if (isSigFixDelay(s, x, y)) {
if (getSigOrder(y) < 2) {
// (x@n)@m = x@(n+m) when n is constant
return normalizeFixedDelayTerm(x, simplify(sigAdd(d, y)));
} else {
return sigFixDelay(s, d);
}
} else {
return sigFixDelay(s, d);
}
}
|