1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
|
//############################## oscillators.lib ######################################
// This library contains a collection of sound generators. Its official prefix is `os`.
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file, GRAME section
Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
declare name "Faust Oscillator Library";
declare version "0.0";
ma = library("maths.lib");
ba = library("basics.lib");
fi = library("filters.lib");
//=========================Wave-Table-Based Oscillators===================================
//========================================================================================
//-----------------------`(os.)sinwaveform`------------------------
// Sine waveform ready to use with a `rdtable`.
//
// #### Usage
//
// ```
// sinwaveform(tablesize) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
//------------------------------------------------------------
sinwaveform(tablesize) = float(ba.time)*(2.0*ma.PI)/float(tablesize) : sin;
//-----------------------`(os.)coswaveform`------------------------
// Cosine waveform ready to use with a `rdtable`.
//
// #### Usage
//
// ```
// coswaveform(tablesize) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
//------------------------------------------------------------
coswaveform(tablesize) = float(ba.time)*(2.0*ma.PI)/float(tablesize) : cos;
//-----------------------`(os.)phasor`------------------------
// A simple phasor to be used with a `rdtable`.
// `phasor` is a standard Faust function.
//
// #### Usage
//
// ```
// phasor(tablesize,freq) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
phasor(tablesize,freq) = freq/float(ma.SR) : (+ : ma.decimal) ~ _ : *(float(tablesize));
//-----------------------`(os.)hs_phasor`------------------------
// Hardsyncing phasor to be used with an `rdtable`.
//
// #### Usage
//
// ```
// hs_phasor(ts,freq,c) : _
// ```
//
// Where:
//
// * `ts`: the tablesize for the related sine wavetable
// * `freq`: the fundamental frequency of the phasor
// * `c`: a clock signal, `c>0` resets phase to 0
//---------------------------------------------------------
// Author: Mike Olsen
hs_phasor(ts,freq,c) = inc : (+ : d)~ (-(_<:(_,*(_,clk)))) : *(ts)
with {
clk = c>0;
d = ma.decimal;
inc = freq/float(ma.SR);
};
//-----------------------`(os.)oscsin`------------------------
// Sine wave oscillator.
// `oscsin` is a standard Faust function.
//
// #### Usage
//
// ```
// oscsin(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
oscsin(freq) = rdtable(tablesize, sinwaveform(tablesize), int(phasor(tablesize,freq)))
with{
tablesize = 1 << 16;
};
//-----------------------`(os.)hs_oscsin`------------------------
// Sin lookup table with hardsyncing phase.
//
// #### Usage
//
// ```
// hs_oscsin(freq,c) : _
// ```
//
// Where:
//
// * `freq`: the fundamental frequency of the phasor
// * `c`: a clock signal, `c>0` resets phase to 0
//---------------------------------------------------------
// Author: Mike Olsen
hs_oscsin(freq,c) = rdtable(ts, sinwaveform(ts), int(hs_phasor(ts,freq,c)))
with {
ts = 1 << 16;
};
//-----------------------`(os.)osccos`------------------------
// Cosine wave oscillator.
//
// #### Usage
//
// ```
// osccos(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
osccos(freq) = rdtable(tablesize, coswaveform(tablesize), int(phasor(tablesize,freq)) )
with{
tablesize = 1 << 16;
};
//-----------------------`(os.)oscp`------------------------
// A sine wave generator with controllable phase.
//
// #### Usage
//
// ```
// oscp(freq,p) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
// * `p`: the phase in radian
//------------------------------------------------------------
oscp(freq,p) = oscsin(freq) * cos(p) + osccos(freq) * sin(p);
//-----------------------`(os.)osci`------------------------
// Interpolated phase sine wave oscillator.
//
// #### Usage
//
// ```
// osci(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
osci(freq) = s1 + d * (s2 - s1)
with {
tablesize = 1 << 16;
i = int(phasor(tablesize,freq));
d = ma.decimal(phasor(tablesize,freq));
s1 = rdtable(tablesize+1,sinwaveform(tablesize),i);
s2 = rdtable(tablesize+1,sinwaveform(tablesize),i+1);
};
// end GRAME section
//########################################################################################
/************************************************************************
FAUST library file, jos section
Except where noted otherwise, The Faust functions below in this
section are Copyright (C) 2003-2017 by Julius O. Smith III <jos@ccrma.stanford.edu>
([jos](http://ccrma.stanford.edu/~jos/)), and released under the
(MIT-style) [STK-4.3](#stk-4.3-license) license.
The MarkDown comments in this section are Copyright 2016-2017 by Romain
Michon and Julius O. Smith III, and are released under the
[CCA4I](https://creativecommons.org/licenses/by/4.0/) license (TODO: if/when Romain agrees)
************************************************************************/
//===============================LFOs===============================
// Low-Frequency Oscillators (LFOs) have prefix `lf_`
// (no aliasing suppression, which is not audible at LF).
//==================================================================
//--------`(os.)lf_imptrain`----------
// Unit-amplitude low-frequency impulse train.
// `lf_imptrain` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_imptrain(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
declare lf_imptrain copyright "Julius O. Smith";
declare lf_imptrain license "STK-4.3.0 (see licenses/stk-4.3.0.md)";
lf_imptrain(freq) = lf_sawpos(freq)<:-(mem)<0; // definition below
//--------`(os.)lf_pulsetrainpos`----------
// Unit-amplitude nonnegative LF pulse train, duty cycle between 0 and 1.
//
//
// #### Usage
//
// ```
// lf_pulsetrainpos(freq,duty) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
// * `duty`: duty cycle between 0 and 1
//------------------------------------------------------------
lf_pulsetrainpos(freq,duty) = float(lf_sawpos(freq) <= duty);
//pulsetrainpos = lf_pulsetrainpos; // for backward compatibility
//--------`(os.)lf_pulsetrain`----------
// Unit-amplitude zero-mean LF pulse train, duty cycle between 0 and 1.
//
// #### Usage
//
// ```
// lf_pulsetrain(freq,duty) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
// * `duty`: duty cycle between 0 and 1
//------------------------------------------------------------
lf_pulsetrain(freq,duty) = 2.0*lf_pulsetrainpos(freq,duty) - 1.0;
//--------`(os.)lf_squarewavepos`----------
// Positive LF square wave in [0,1]
//
// #### Usage
//
// ```
// lf_squarewavepos(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
lf_squarewavepos(freq) = lf_pulsetrainpos(freq,0.5);
// squarewavepos = lf_squarewavepos; // for backward compatibility
//--------`(os.)lf_squarewave`----------
// Zero-mean unit-amplitude LF square wave.
// `lf_squarewave` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_squarewave(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
lf_squarewave(freq) = 2*lf_squarewavepos(freq) - 1;
// squarewave = lf_squarewave; // for backward compatibility
//--------`(os.)lf_trianglepos`----------
// Positive unit-amplitude LF positive triangle wave.
//
// #### Usage
//
// ```
// lf_trianglepos(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
lf_trianglepos(freq) = 1-abs(saw1(freq)); // saw1 defined below
//----------`(os.)lf_triangle`----------
// Positive unit-amplitude LF triangle wave
// `lf_triangle` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_triangle(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
// Author: Bart Brouns
// License: STK-4.3
lf_triangle(freq) = 2*lf_trianglepos(freq) - 1;
//================== Low Frequency Sawtooths ====================
// Sawtooth waveform oscillators for virtual analog synthesis et al.
// The 'simple' versions (`lf_rawsaw`, `lf_sawpos` and `saw1`), are mere samplings of
// the ideal continuous-time ("analog") waveforms. While simple, the
// aliasing due to sampling is quite audible. The differentiated
// polynomial waveform family (`saw2`, `sawN`, and derived functions)
// do some extra processing to suppress aliasing (not audible for
// very low fundamental frequencies). According to Lehtonen et al.
// (JASA 2012), the aliasing of `saw2` should be inaudible at fundamental
// frequencies below 2 kHz or so, for a 44.1 kHz sampling rate and 60 dB SPL
// presentation level; fundamentals 415 and below required no aliasing
// suppression (i.e., `saw1` is ok).
//=====================================================================
//-----------------`(os.)lf_rawsaw`--------------------
// Simple sawtooth waveform oscillator between 0 and period in samples.
//
// #### Usage
//
// ```
// lf_rawsaw(periodsamps)
// ```
//
// Where:
//
// * `periodsamps`: number of periods per samples
//---------------------------------------------------------
lf_rawsaw(periodsamps) = (_,periodsamps : fmod) ~ +(1.0);
//-----------------`(os.)lf_sawpos_phase`--------------------
// Simple sawtooth waveform oscillator between 0 and 1
// with phase control.
//
// #### Usage
//
// ```
// lf_sawpos_phase(freq,phase)
// ```
//
// Where:
//
// * `freq`: frequency
// * `phase`: phase
//---------------------------------------------------------
lf_sawpos_phase(phase,freq) = (+(phase-phase') : ma.frac ) ~ +(freq/ma.SR);
//-----------------`(os.)lf_sawpos`--------------------
// Simple sawtooth waveform oscillator between 0 and 1.
//
// #### Usage
//
// ```
// lf_sawpos(freq)
// ```
//
// Where:
//
// * `freq`: frequency
//
//---------------------------------------------------------
// Author: Bart Brouns
// License: STK-4.3
// MarkDown: Romain Michon
lf_sawpos(freq) = ma.frac ~ +(freq'/ma.SR);
//-----------------`(os.)lf_saw`--------------------
// Simple sawtooth waveform.
// `lf_saw` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_saw(freq)
// ```
//
// Where:
//
// * `freq`: frequency
//---------------------------------------------------------
// Author: Bart Brouns
// License: STK-4.3
saw1(freq) = 2.0 * lf_sawpos(freq) - 1.0;
lf_saw(freq) = saw1(freq);
//================== Bandlimited Sawtooth ====================
//-----------------`(os.)sawN`--------------------
// Bandlimited Sawtooth
//
// `sawN(N,freq)`, `sawNp`, `saw2dpw(freq)`, `saw2(freq)`, `saw3(freq)`,
// `saw4(freq)`, `saw5(freq)`, `saw6(freq)`, `sawtooth(freq)`, `saw2f2(freq)`
// `saw2f4(freq)`
//
// #### Method 1 (`saw2`)
//
// Polynomial Transition Regions (PTR) (for aliasing suppression).
//
// ##### Reference
//
// * Kleimola, J.; Valimaki, V., "Reducing Aliasing from Synthetic Audio
// Signals Using Polynomial Transition Regions," in Signal Processing
// Letters, IEEE , vol.19, no.2, pp.67-70, Feb. 2012
// * <https://aaltodoc.aalto.fi/bitstream/handle/123456789/7747/publication6.pdf?sequence=9>
// * <http://research.spa.aalto.fi/publications/papers/spl-ptr/>
//
// #### Method 2 (`sawN`)
//
// Differentiated Polynomial Waves (DPW) (for aliasing suppression).
//
// ##### Reference
//
// "Alias-Suppressed Oscillators based on Differentiated Polynomial Waveforms",
// Vesa Valimaki, Juhan Nam, Julius Smith, and Jonathan Abel,
// IEEE Tr. Acoustics, Speech, and Language Processing (IEEE-ASLP),
// Vol. 18, no. 5, May 2010.
//
// #### Other Cases
//
// Correction-filtered versions of `saw2`: `saw2f2`, `saw2f4`
// The correction filter compensates "droop" near half the sampling rate.
// See reference for sawN.
//
// #### Usage
//
// ```
// sawN(N,freq) : _
// sawNp(N,freq,phase) : _
// saw2dpw(freq) : _
// saw2(freq) : _
// saw3(freq) : _ // based on sawN
// saw4(freq) : _ // based on sawN
// saw5(freq) : _ // based on sawN
// saw6(freq) : _ // based on sawN
// sawtooth(freq) : _ // = saw2
// saw2f2(freq) : _
// saw2f4(freq) : _
// ```
//
// Where:
//
// * `N`: polynomial order
// * `freq`: frequency in Hz
// * `phase`: phase
//===================================================================
// --- sawN for N = 1 to 6 ---
//We can do 6, but 5 and 6 have noise at low fundamentals: MAX_SAW_ORDER = 6; MAX_SAW_ORDER_NEXTPOW2 = 8;
MAX_SAW_ORDER = 4; MAX_SAW_ORDER_NEXTPOW2 = 8; // par cannot handle the case of 0 elements
sawN(N,freq) = saw1l : poly(Nc) : D(Nc-1) : gate(Nc-1)
with {
Nc = max(1,min(N,MAX_SAW_ORDER));
clippedFreq = max(20.0,abs(freq)); // use lf_sawpos(freq) for LFOs (freq < 20 Hz)
saw1l = 2*lf_sawpos(clippedFreq) - 1; // zero-mean, amplitude +/- 1
// Also note the availability of lf_sawpos_phase above.
poly(1,x) = x;
poly(2,x) = x*x;
poly(3,x) = x*x*x - x;
poly(4,x) = x*x*(x*x - 2.0);
poly(5,x) = x*(7.0/3 + x*x*(-10.0/3.0 + x*x));
poly(6,x) = x*x*(7.0 + x*x*(-5.0 + x*x));
p0n = float(ma.SR)/clippedFreq; // period in samples
diff1(x) = (x - x')/(2.0/p0n);
diff(N) = seq(n,N,diff1); // N diff1s in series
factorial(0) = 1;
factorial(i) = i * factorial(i-1);
D(0) = _;
D(i) = diff(i)/factorial(i+1);
gate(N) = *(1@(N)); // delayed step for blanking startup glitch
};
//------------------`(os.)sawNp`--------------------------------
// TODO: MarkDown doc in comments
//--------------------------------------------------------
// --- sawNp for N = 1 to 6 ---
// Phase offset = delay (max 8191 samples is more than one period of audio):
sawNp(N,freq,phase) = sawN(N,freq) : @(max(0,min(8191,int(phase*ma.SR/freq))));
// Special named cases:
//------------------`(os.)saw2dpw`--------------------------------
// TODO: MarkDown doc in comments
//--------------------------------------------------------
// --- sawN ---
saw2dpw(freq) = saw1(freq) <: * <: -(mem) : *(0.25'*ma.SR/freq); // inferior to saw2 below
//------------------`(os.)saw3`--------------------------------
// TODO: MarkDown doc in comments
//--------------------------------------------------------
saw3 = sawN(3); saw4 = sawN(4); saw5 = sawN(5); saw6 = sawN(6);
//------------------`(os.)sawtooth`--------------------------------
// Alias-free sawtooth wave. 2nd order interpolation (based
// on `saw2`).
// `sawtooth` is a standard Faust function.
//
// #### Usage
//
// ```
// sawtooth(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//--------------------------------------------------------
saw2(freq) = y with { // newer PTR version (stateless - freq can vary at any speed)
p0 = float(ma.SR)/float(max(1.0e-7,abs(freq))); // period in samples
t0 = 1.0/p0; // phase increment
p = ((_<:(-(1)<:_,_),_) <: selector1,selector2) ~(+(t0)):!,_;
selector1 = select2(<(0)); // for feedback
selector2 = select2(<(0), (_<:_,(*(1-p0):+(1)):+), _); // for output
y = 2*p-1;
};
// --- sawtooth ---
sawtooth = saw2; // default choice for sawtooth signal - see also sawN
//------------------`(os.)saw2f2`--------------------------------
// TODO: MarkDown doc in comments
//--------------------------------------------------------
// --- Correction-filtered versions of saw2: saw2f2, saw2f4 ----
// The correction filter compensates "droop" near half the sampling rate.
// See reference for sawN.
saw2f2 = saw2 : cf2 with {
cf2 = fi.tf2(1.155704605878911, 0.745184288225518,0.040305967265900,
0.823765146386639, 0.117420665547108);
};
//------------------`(os.)saw2f4`--------------------------------
// TODO: MarkDown doc in comments
//--------------------------------------------------------
saw2f4 = saw2 : cf4 with {
cf4 = fi.iir((1.155727435125014, 2.285861038554662,
1.430915027294021, 0.290713280893317, 0.008306401748854),
(2.156834679164532, 1.559532244409321, 0.423036498118354,
0.032080681130972));
};
//=========Bandlimited Pulse, Square, and Impulse Trains============
// Bandlimited Pulse, Square, and Impulse Trains.
//
// `pulsetrainN`, `pulsetrain`, `squareN`, `square`, `imptrain`, `imptrainN`,
// `triangle`, `triangleN`
//
// All are zero-mean and meant to oscillate in the audio frequency range.
// Use simpler sample-rounded lf_* versions above for LFOs.
//
// #### Usage
//
// ```
// pulsetrainN(N,freq,duty) : _
// pulsetrain(freq, duty) : _ // = pulsetrainN(2)
// squareN(N, freq) : _
// square : _ // = squareN(2)
// imptrainN(N,freq) : _
// imptrain : _ // = imptrainN(2)
// triangleN(N,freq) : _
// triangle : _ // = triangleN(2)
// ```
//
// Where:
//
// * `N`: polynomial order
// * `freq`: frequency in Hz
//====================================================================
//------------------`(os.)pulsetrainN`--------------------------------
// TODO: MarkDown doc in comments
//--------------------------------------------------------
pulsetrainN(N,freq,duty) = diffdel(sawN(N,freqC),del) with {
// non-interpolated-delay version: diffdel(x,del) = x - x@int(del+0.5);
// linearly interpolated delay version (sounds good to me):
diffdel(x,del) = x-x@int(del)*(1-ma.frac(del))-x@(int(del)+1)*ma.frac(del);
// Third-order Lagrange interpolated-delay version (see filters.lib):
// diffdel(x,del) = x - fdelay3(DELPWR2,max(1,min(DELPWR2-2,ddel)));
DELPWR2 = 2048; // Needs to be a power of 2 when fdelay*() used above.
delmax = DELPWR2-1; // arbitrary upper limit on diff delay (duty=0.5)
SRmax = 96000.0; // assumed upper limit on sampling rate
fmin = SRmax / float(2.0*delmax); // 23.4 Hz (audio freqs only)
freqC = max(freq,fmin); // clip frequency at lower limit
period = (float(ma.SR) / freqC); // actual period
ddel = duty * period; // desired delay
del = max(0,min(delmax,ddel));
};
//------------------`(os.)pulsetrain`--------------------------------
// Bandlimited pulse train oscillator. Based on `pulsetrainN(2)`.
// `pulsetrain` is a standard Faust function.
//
// #### Usage
//
// ```
// pulsetrain(freq, duty) : _
// ```
//
// Where:
//
// * `freq`: frequency
// * `duty`: duty cycle between 0 and 1
//--------------------------------------------------------
pulsetrain = pulsetrainN(2);
//------------------`(os.)squareN`--------------------------------
// TODO: MarkDown doc in comments
//--------------------------------------------------------
squareN(N,freq) = pulsetrainN(N,freq,0.5);
//------------------`(os.)square`--------------------------------
// Bandlimited square wave oscillator. Based on `squareN(2)`.
// `square` is a standard Faust function.
//
// #### Usage
//
// ```
// square(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//--------------------------------------------------------
square = squareN(2);
//------------------`(os.)impulse`--------------------------------
// One-time impulse generated when the Faust process is started.
// `impulse` is a standard Faust function.
//
// #### Usage
//
// ```
// impulse : _
// ```
//--------------------------------------------------------
impulse = 1-1';
//------------------`(os.)imptrainN`--------------------------------
// TODO: MarkDown doc in comments
//--------------------------------------------------------
imptrainN(N,freq) = impulse + 0.5*ma.diffn(sawN(N,freq));
//------------------`(os.)imptrain`--------------------------------
// Bandlimited impulse train generator. Based on `imptrainN(2)`.
// `imptrain` is a standard Faust function.
//
// #### Usage
//
// ```
// imptrain(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//--------------------------------------------------------
imptrain = imptrainN(2); // default based on saw2
//------------------`(os.)triangleN`--------------------------------
// TODO: MarkDown doc in comments
//--------------------------------------------------------
triangleN(N,freq) = squareN(N,freq) : fi.pole(p) : *(gain) with {
gain = 4.0*freq/ma.SR; // for aproximate unit peak amplitude
p = 0.999;
};
//------------------`(os.)triangle`--------------------------------
// Bandlimited triangle wave oscillator. Based on `triangleN(2)`.
// `triangle` is a standard Faust function.
//
// #### Usage
//
// ```
// triangle(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//--------------------------------------------------------
triangle = triangleN(2); // default based on saw2
//===============================Filter-Based Oscillators=================================
// Filter-Based Oscillators
//
// #### Usage
//
// ```
// osc[b|r|rs|rc|s|w](f), where f = frequency in Hz.
// ```
//
// #### References
//
// * <http://lac.linuxaudio.org/2012/download/lac12-slides-jos.pdf>
// * <https://ccrma.stanford.edu/~jos/pdf/lac12-paper-jos.pdf>
//========================================================================================
//--------------------------`(os.)oscb`--------------------------------
// Sinusoidal oscillator based on the biquad.
//
// #### Usage
//
// ```
// oscb(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//------------------------------------------------------------
oscb(f) = impulse : fi.tf2(1,0,0,a1,1)
with {
a1 = -2*cos(2*ma.PI*f/ma.SR);
};
//--------------------------`(os.)oscrq`---------------------------
// Sinusoidal (sine and cosine) oscillator based on 2D vector rotation,
// = undamped "coupled-form" resonator
// = lossless 2nd-order normalized ladder filter.
//
// #### Usage
//
// ```
// oscrq(freq) : _,_
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
oscrq(f) = impulse : fi.nlf2(f,1); // sine and cosine outputs
//--------------------------`(os.)oscrs`---------------------------
// Sinusoidal (sine) oscillator based on 2D vector rotation,
// = undamped "coupled-form" resonator
// = lossless 2nd-order normalized ladder filter.
//
// #### Usage
//
// ```
// oscrs(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
oscrs(f) = impulse : fi.nlf2(f,1) : _,!; // sine
//--------------------------`(os.)oscrc`---------------------------
// Sinusoidal (cosine) oscillator based on 2D vector rotation,
// = undamped "coupled-form" resonator
// = lossless 2nd-order normalized ladder filter.
//
// #### Usage
//
// ```
// oscrc(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
oscrc(f) = impulse : fi.nlf2(f,1) : !,_; // cosine
oscrp(f,p) = oscrq(f) : *(cos(p)), *(sin(p)) : + ; // p=0 for sine, p=PI/2 for cosine, etc.
oscr = oscrs; // default = sine (starts without a pop)
//--------------------------`(os.)oscs`--------------------------------
// Sinusoidal oscillator based on the state variable filter
// = undamped "modified-coupled-form" resonator
// = "magic circle" algorithm used in graphics.
//------------------------------------------------------------
oscs(f) = (*(-1) : sint(wn) : sintp(wn,impulse)) ~ _
with {
wn = 2*ma.PI*f/ma.SR; // approximate
// wn = 2*sin(PI*f/SR); // exact
sub(x,y) = y-x;
sint(x) = *(x) : + ~ _ ; // frequency-scaled integrator
sintp(x,y) = *(x) : +(y): + ~ _ ; // same + state input
};
//-----------------------`(os.)osc`------------------------
// Default sine wave oscillator (same as [oscsin](#oscsin)).
// `osc` is a standard Faust function.
//
// #### Usage
//
// ```
// osc(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
osc = oscsin;
//================ Waveguide-Resonator-Based Oscillators ================
// Sinusoidal oscillator based on the waveguide resonator `wgr`.
//=======================================================================
//-----------------`(os.)oscw`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`. Unit-amplitude
// cosine oscillator.
//
// #### Usage
//
// ```
// oscwc(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
oscwc(fr) = impulse : fi.wgr(fr,1) : _,!; // cosine (cheapest at 1 mpy/sample)
//-----------------`(os.)oscws`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`. Unit-amplitude
// sine oscillator.
//
// #### Usage
//
// ```
// oscws(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
oscws(fr) = impulse : fi.wgr(fr,1) : !,_; // sine (needs a 2nd scaling mpy)
//-----------------`(os.)oscwq`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`.
// Unit-amplitude cosine and sine (quadrature) oscillator.
//
// #### Usage
//
// ```
// oscwq(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
oscq(fr) = impulse : fi.wgr(fr,1); // phase quadrature outputs
//-----------------`(os.)oscw`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`.
// Unit-amplitude cosine oscillator (default).
//
// #### Usage
//
// ```
// oscw(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
oscw = oscwc;
// end jos section
//########################################################################################
/************************************************************************
FAUST library file, further contributions section
All contributions below should indicate both the contributor and terms
of license. If no such indication is found, "git blame" will say who
last edited each line, and that person can be emailed to inquire about
license disposition, if their license choice is not already indicated
elsewhere among the libraries. It is expected that all software will be
released under LGPL, STK-4.3, MIT, BSD, or a similar FOSS license.
************************************************************************/
//===================== Casio CZ Oscillators ==========================
// Oscillators that mimics some of the Casio CZ oscillators.
//=====================================================================
//----------`(os.)CZsaw`----------
// Oscillator that mimics the Casio CZ saw oscillator
// `CZsaw` is a standard Faust function.
//
// #### Usage
//
// ```
// CZsaw(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = saw-wave
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// CZ oscilators by Mike Moser-Booth. ported from pd to Faust by Bart Brouns
CZsaw(fund, index) =
((
(fund*((.5-tmp)/tmp)),
(-1*fund+1)*((.5-tmp)/(1-tmp))
):min+fund)
*2*ma.PI:cos with {
tmp = (.5-(index*.5)):max(0.01):min(0.5);
};
//----------`(os.)CZsquare`----------
// Oscillator that mimics the Casio CZ square oscillator
// `CZsquare` is a standard Faust function.
//
// #### Usage
//
// ```
// CZsquare(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = square-wave
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// CZ oscilators by Mike Moser-Booth. ported from pd to Faust by Bart Brouns
CZsquare(fund, index) =
(fund>=0.5),
(ma.decimal((fund*2)+1)<:_-min(_,(-1*_+1)*((INDEX)/(1-INDEX))))
:+ *ma.PI:cos*0.5
with {INDEX = (index:pow(0.25)) * 0.98;};
//----------`(os.)CZpulse`----------
// Oscillator that mimics the Casio CZ pulse oscillator
// `CZpulse` is a standard Faust function.
//
// #### Usage
//
// ```
// CZpulse(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 gives a sine-wave, 1 is closer to a pulse
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// CZ oscilators by Mike Moser-Booth. ported from pd to Faust by Bart Brouns
CZpulse(fund, index) =
((fund-min(fund,((-1*fund+1)*(INDEX/(1-INDEX)))))*2*ma.PI):cos with
{INDEX = index:min(0.99):max(0);};
//----------`(os.)CZsinePulse`----------
// Oscillator that mimics the Casio CZ sine/pulse oscillator
// `CZsinePulse` is a standard Faust function.
//
// #### Usage
//
// ```
// CZsinePulse(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 gives a sine-wave, 1 is a sine minus a pulse
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// CZ oscilators by Mike Moser-Booth. ported from pd to Faust by Bart Brouns
CZsinePulse(fund, index) =
(min(fund*((0.5-INDEX)/INDEX),(-1*fund+1)*((.5-INDEX)/(1-INDEX)))+fund)*4*ma.PI:cos
with {INDEX = ((index*-0.49)+0.5);};
//----------`(os.)CZhalfSine`----------
// Oscillator that mimics the Casio CZ half sine oscillator
// `CZhalfSine` is a standard Faust function.
//
// #### Usage
//
// ```
// CZhalfSine(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 gives a sine-wave, 1 is somewhere between a saw and a square
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// CZ oscilators by Mike Moser-Booth. ported from pd to Faust by Bart Brouns
CZhalfSine(fund, index) =
(select2(fund<.5 , .5*(fund-.5)/INDEX+.5 , fund):min(1))*2*ma.PI:cos
with {
INDEX = (.5-(index*0.5)):min(.5):max(.01);
};
//----------`(os.)CZresSaw`----------
// Oscillator that mimics the Casio CZ resonant saw-tooth oscillator
// `CZresSaw` is a standard Faust function.
//
// #### Usage
//
// ```
// CZresSaw(fund,res) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `res`: the frequency of resonance as a factor of the fundamental pitch.
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// CZ oscilators by Mike Moser-Booth. ported from pd to Faust by Bart Brouns
CZresSaw(fund,res) =
(((-1*(1-fund)) * ((cos((ma.decimal((max(1,res)*fund) +1 ))*2*ma.PI) * -.5) +.5))*2)+1;
//----------`(os.)CZresTriangle`----------
// Oscillator that mimics the Casio CZ resonant triangle oscillator
// `CZresTriangle` is a standard Faust function.
//
// #### Usage
//
// ```
// CZresTriangle(fund,res) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `res`: the frequency of resonance as a factor of the fundamental pitch.
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// CZ oscilators by Mike Moser-Booth. ported from pd to Faust by Bart Brouns
CZresTriangle(fund,res) =
select2(fund<.5 , 2-(fund*2) , fund*2)*tmp*2-1 with {
tmp = ((fund*(res:max(1)))+1:ma.decimal)*2*ma.PI:cos*.5+.5;
};
//----------`(os.)CZresTrap`----------
// Oscillator that mimics the Casio CZ resonant trapeze oscillator
// `CZresTrap` is a standard Faust function.
//
// #### Usage
//
// ```
// CZresTrap(fund,res) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `res`: the frequency of resonance as a factor of the fundamental pitch.
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// CZ oscilators by Mike Moser-Booth. ported from pd to Faust by Bart Brouns
CZresTrap(fund, res) =
(((1-fund)*2):min(1) * sin(ma.decimal(fund*(res:max(1)))*2*ma.PI));
// end further contributions section
//########################################################################################
|