1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
//#################################### vaeffects.lib ########################################
// A library of virtual analog filter effects. Its official prefix is `ve`.
//########################################################################################
ma = library("maths.lib");
si = library("signals.lib");
an = library("analyzers.lib");
fi = library("filters.lib");
declare name "Faust Virtual Analog Filter Effect Library";
declare version "0.0";
//########################################################################################
/************************************************************************
FAUST library file, jos section
Except where noted otherwise, The Faust functions below in this
section are Copyright (C) 2003-2017 by Julius O. Smith III <jos@ccrma.stanford.edu>
([jos](http://ccrma.stanford.edu/~jos/)), and released under the
(MIT-style) [STK-4.3](#stk-4.3-license) license.
All MarkDown comments in this section are Copyright 2016-2017 by Romain
Michon and Julius O. Smith III, and are released under the
[CCA4I](https://creativecommons.org/licenses/by/4.0/) license (TODO: if/when Romain agrees!)
************************************************************************/
//=============================Functions Reference========================================
//========================================================================================
//-------------------------`(ve.)moog_vcf`---------------------------
// Moog "Voltage Controlled Filter" (VCF) in "analog" form. Moog VCF
// implemented using the same logical block diagram as the classic
// analog circuit. As such, it neglects the one-sample delay associated
// with the feedback path around the four one-poles.
// This extra delay alters the response, especially at high frequencies
// (see reference [1] for details).
// See `moog_vcf_2b` below for a more accurate implementation.
//
// #### Usage
//
// ```
// moog_vcf(res,fr)
// ```
// Where:
//
// * `res`: normalized amount of corner-resonance between 0 and 1
// (0 is no resonance, 1 is maximum)
// * `fr`: corner-resonance frequency in Hz (less than SR/6.3 or so)
//
// #### References
// * <https://ccrma.stanford.edu/~stilti/papers/moogvcf.pdf>
// * <https://ccrma.stanford.edu/~jos/pasp/vegf.html>
//------------------------------------------------------------
moog_vcf(res,fr) = (+ : seq(i,4,fi.pole(p)) : *(unitygain(p))) ~ *(mk)
with {
p = 1.0 - fr * 2.0 * ma.PI / ma.SR; // good approximation for fr << SR
unitygain(p) = pow(1.0-p,4.0); // one-pole unity-gain scaling
mk = -4.0*max(0,min(res,0.999999)); // need mk > -4 for stability
};
//-----------------------`(ve.)moog_vcf_2b[n]`---------------------------
// Moog "Voltage Controlled Filter" (VCF) as two biquads. Implementation
// of the ideal Moog VCF transfer function factored into second-order
// sections. As a result, it is more accurate than `moog_vcf` above, but
// its coefficient formulas are more complex when one or both parameters
// are varied. Here, res is the fourth root of that in `moog_vcf`, so, as
// the sampling rate approaches infinity, `moog_vcf(res,fr)` becomes equivalent
// to `moog_vcf_2b[n](res^4,fr)` (when res and fr are constant).
// `moog_vcf_2b` uses two direct-form biquads (`tf2`).
// `moog_vcf_2bn` uses two protected normalized-ladder biquads (`tf2np`).
//
// #### Usage
//
// ```
// moog_vcf_2b(res,fr)
// moog_vcf_2bn(res,fr)
// ```
//
// Where:
//
// * `res`: normalized amount of corner-resonance between 0 and 1
// (0 is min resonance, 1 is maximum)
// * `fr`: corner-resonance frequency in Hz
//------------------------------------------------------------
moog_vcf_2b(res,fr) = fi.tf2s(0,0,b0,a11,a01,w1) : fi.tf2s(0,0,b0,a12,a02,w1)
with {
s = 1; // minus the open-loop location of all four poles
frl = max(20,min(10000,fr)); // limit fr to reasonable 20-10k Hz range
w1 = 2*ma.PI*frl; // frequency-scaling parameter for bilinear xform
// Equivalent: w1 = 1; s = 2*PI*frl;
kmax = sqrt(2)*0.99999; // 0.99999 gives stability margin (tf2 is unprotected)
k = min(kmax,sqrt(2)*res); // fourth root of Moog VCF feedback gain
b0 = s^2;
s2k = sqrt(2) * k;
a11 = s * (2 + s2k);
a12 = s * (2 - s2k);
a01 = b0 * (1 + s2k + k^2);
a02 = b0 * (1 - s2k + k^2);
};
moog_vcf_2bn(res,fr) = fi.tf2snp(0,0,b0,a11,a01,w1) : fi.tf2snp(0,0,b0,a12,a02,w1)
with {
s = 1; // minus the open-loop location of all four poles
w1 = 2*ma.PI*max(fr,20); // frequency-scaling parameter for bilinear xform
k = sqrt(2)*0.99999*res; // fourth root of Moog VCF feedback gain
b0 = s^2;
s2k = sqrt(2) * k;
a11 = s * (2 + s2k);
a12 = s * (2 - s2k);
a01 = b0 * (1 + s2k + k^2);
a02 = b0 * (1 - s2k + k^2);
};
//--------------------------`(ve.)wah4`-------------------------------
// Wah effect, 4th order.
// `wah4` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : wah4(fr) : _
// ```
//
// Where:
//
// * `fr`: resonance frequency in Hz
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/vegf.html>
//------------------------------------------------------------
wah4(fr) = 4*moog_vcf((3.2/4),fr:si.smooth(0.999));
//------------------------`(ve.)autowah`-----------------------------
// Auto-wah effect.
// `autowah` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : autowah(level) : _;
// ```
//
// Where:
//
// * `level`: amount of effect desired (0 to 1).
//------------------------------------------------------------
autowah(level,x) = level * crybaby(an.amp_follower(0.1,x),x) + (1.0-level)*x;
//--------------------------`(ve.)crybaby`-----------------------------
// Digitized CryBaby wah pedal.
// `crybaby` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : crybaby(wah) : _
// ```
//
// Where:
//
// * `wah`: "pedal angle" from 0 to 1
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/vegf.html>
//------------------------------------------------------------
crybaby(wah) = *(gs) : fi.tf2(1,-1,0,a1s,a2s)
with {
Q = pow(2.0,(2.0*(1.0-wah)+1.0)); // Resonance "quality factor"
fr = 450.0*pow(2.0,2.3*wah); // Resonance tuning
g = 0.1*pow(4.0,wah); // gain (optional)
// Biquad fit using z = exp(s T) ~ 1 + sT for low frequencies:
frn = fr/ma.SR; // Normalized pole frequency (cycles per sample)
R = 1 - ma.PI*frn/Q; // pole radius
theta = 2*ma.PI*frn; // pole angle
a1 = 0-2.0*R*cos(theta); // biquad coeff
a2 = R*R; // biquad coeff
// dezippering of slider-driven signals:
s = 0.999; // smoothing parameter (one-pole pole location)
a1s = a1 : si.smooth(s);
a2s = a2 : si.smooth(s);
gs = g : si.smooth(s);
//tf2 = component("filters.lib").tf2;
};
// end jos section
/************************************************************************
************************************************************************
FAUST library file, GRAME section
Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
//----------------------------`(ve.)vocoder`-------------------------
// A very simple vocoder where the spectrum of the modulation signal
// is analyzed using a filter bank.
// `vocoder` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : vocoder(nBands,att,rel,BWRatio,source,excitation) : _;
// ```
//
// Where:
//
// * `nBands`: Number of vocoder bands
// * `att`: Attack time in seconds
// * `rel`: Release time in seconds
// * `BWRatio`: Coefficient to adjust the bandwidth of each band (0.1 - 2)
// * `source`: Modulation signal
// * `excitation`: Excitation/Carrier signal
//------------------------------------------------------------
// TODO: author RM
oneVocoderBand(band,bandsNumb,bwRatio,bandGain,x) = x : fi.resonbp(bandFreq,bandQ,bandGain) with{
bandFreq = 25*pow(2,(band+1)*(9/bandsNumb));
BW = (bandFreq - 25*pow(2,(band)*(9/bandsNumb)))*bwRatio;
bandQ = bandFreq/BW;
};
vocoder(nBands,att,rel,BWRatio,source,excitation) = source <: par(i,nBands,oneVocoderBand(i,nBands,BWRatio,1) :
an.amp_follower_ar(att,rel) : _,excitation : oneVocoderBand(i,nBands,BWRatio)) :> _ ;
//########################################################################################
/************************************************************************
FAUST library file, further contributions section
All contributions below should indicate both the contributor and terms
of license. If no such indication is found, "git blame" will say who
last edited each line, and that person can be emailed to inquire about
license disposition, if their license choice is not already indicated
elsewhere among the libraries. It is expected that all software will be
released under LGPL, STK-4.3, MIT, BSD, or a similar FOSS license.
************************************************************************/
// end further further contributions section
|