1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
//#################################### compressors.lib ####################################
// A library of compressor effects. Its official prefix is `co`.
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ba = library("basics.lib");
si = library("signals.lib");
an = library("analyzers.lib");
ro = library("routes.lib");
ma = library("maths.lib");
it = library("interpolators.lib");
declare name "Faust Compressor Effect Library";
declare version "0.1";
//=============================Functions Reference========================================
//========================================================================================
//--------------------`(co.)peak_compression_gain_mono`-------------------
// Mono dynamic range compressor gain computer.
// `peak_compression_gain_mono` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : peak_compression_gain_mono(strength,thresh,att,rel,knee,prePost) : _
// ```
//
// Where:
//
// * `strength`: strength of the compression (0 = no compression, 1 means hard limiting, >1 means over-compression)
// * `thresh`: dB level threshold above which compression kicks in
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
// * `knee`: a gradual increase in gain reduction around the threshold:
// Below thresh-(knee/2) there is no gain reduction,
// above thresh+(knee/2) there is the same gain reduction as without a knee,
// and in between there is a gradual increase in gain reduction.
// * `prePost`: places the level detector either at the input or after the gain computer;
// this turns it from a linear return-to-zero detector into a log domain return-to-threshold detector
// It uses a strength parameter instead of the traditional ratio, in order to be able to
// function as a hard limiter.
// For that you'd need a ratio of infinity:1, and you cannot express that in Faust
// Sometimes even bigger ratios are useful:
// For example a group recording where one instrument is recorded with both a close microphone and a room microphone,
// and the instrument is loud enough in the room mic when playing loud, but you want to boost it when it is playing soft.
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * Digital Dynamic Range Compressor Design
// A Tutorial and Analysis
// DIMITRIOS GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk)
// MICHAEL MASSBERG (michael@massberg.org)
// AND JOSHUA D. REISS (josh.reiss@eecs.qmul.ac.uk)
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// note: si.lag_ud has a bug where if you compile with standard precision,
// down is 0 and prePost is 1, you go into infinite GR and stay there
peak_compression_gain_mono(strength,thresh,att,rel,knee,prePost) =
abs:ba.bypass1(prePost,si.lag_ud(att,rel)) : ba.linear2db : gain_computer(strength,thresh,knee):ba.bypass1((prePost*-1)+1,si.lag_ud(rel,att)) : ba.db2linear
with {
gain_computer(strength,thresh,knee,level) =
select3((level>(thresh-(knee/2)))+(level>(thresh+(knee/2))),
0,
((level-thresh+(knee/2)):pow(2)/(2*knee)),
(level-thresh)) : max(0)*-strength;
};
//--------------------`(co.)peak_compression_gain_N_chan`-------------------
// N channel dynamic range compressor gain computer.
// `peak_compression_gain_N_chan` is a standard Faust function.
//
// #### Usage
//
// ```
// si.bus(N) : peak_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,N) : si.bus(N)
// ```
//
// Where:
//
// * `strength`: strength of the compression (0 = no compression, 1 means hard limiting, >1 means over-compression)
// * `thresh`: dB level threshold above which compression kicks in
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
// * `knee`: a gradual increase in gain reduction around the threshold:
// Below thresh-(knee/2) there is no gain reduction,
// above thresh+(knee/2) there is the same gain reduction as without a knee,
// and in between there is a gradual increase in gain reduction.
// * `prePost`: places the level detector either at the input or after the gain computer;
// this turns it from a linear return-to-zero detector into a log domain return-to-threshold detector
// * `link`: the amount of linkage between the channels. 0 = each channel is independent, 1 = all channels have the same amount of gain reduction
// * `N`: the number of channels of the compressor
// It uses a strength parameter instead of the traditional ratio, in order to be able to
// function as a hard limiter.
// For that you'd need a ratio of infinity:1, and you cannot express that in Faust.
// Sometimes even bigger ratios are useful:
// for example a group recording where one instrument is recorded with both a close microphone and a room microphone,
// and the instrument is loud enough in the room mic when playing loud, but you want to boost it when it is playing soft.
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * Digital Dynamic Range Compressor Design
// A Tutorial and Analysis
// DIMITRIOS GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk)
// MICHAEL MASSBERG (michael@massberg.org)
// AND JOSHUA D. REISS (josh.reiss@eecs.qmul.ac.uk)
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// generalise compression gains for N channels.
// first we define a mono version:
peak_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,1) =
peak_compression_gain_mono(strength,thresh,att,rel,knee,prePost);
// The actual N-channel version:
// Calculate the maximum gain reduction of N channels,
// and then crossfade between that and each channel's own gain reduction,
// to link/unlink channels
peak_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,N) =
par(i, N, peak_compression_gain_mono(strength,thresh,att,rel,knee,prePost))
<:(si.bus(N),(ba.parallelMin(N)<:si.bus(N))):ro.interleave(N,2):par(i,N,(it.interpolate_linear(link)));
//--------------------`(co.)FFcompressor_N_chan`-------------------
// feed forward N channel dynamic range compressor.
// `FFcompressor_N_chan` is a standard Faust function.
//
// #### Usage
//
// ```
// si.bus(N) : FFcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,meter,N) : si.bus(N)
// ```
//
// Where:
//
// * `strength`: strength of the compression (0 = no compression, 1 means hard limiting, >1 means over-compression)
// * `thresh`: dB level threshold above which compression kicks in
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
// * `knee`: a gradual increase in gain reduction around the threshold:
// Below thresh-(knee/2) there is no gain reduction,
// above thresh+(knee/2) there is the same gain reduction as without a knee,
// and in between there is a gradual increase in gain reduction.
// * `prePost`: places the level detector either at the input or after the gain computer;
// this turns it from a linear return-to-zero detector into a log domain return-to-threshold detector
// * `link`: the amount of linkage between the channels. 0 = each channel is independent, 1 = all channels have the same amount of gain reduction
// * `meter`: a gain reduction meter. It can be implemented like so:
// meter = _<:(_, (ba.linear2db:max(maxGR):meter_group((hbargraph("[1][unit:dB][tooltip: gain reduction in dB]", maxGR, 0))))):attach;
// * `N`: the number of channels of the compressor
// It uses a strength parameter instead of the traditional ratio, in order to be able to
// function as a hard limiter.
// For that you'd need a ratio of infinity:1, and you cannot express that in Faust.
// Sometimes even bigger ratios are useful:
// for example a group recording where one instrument is recorded with both a close microphone and a room microphone,
// and the instrument is loud enough in the room mic when playing loud, but you want to boost it when it is playing soft.
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * Digital Dynamic Range Compressor Design
// A Tutorial and Analysis
// DIMITRIOS GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk)
// MICHAEL MASSBERG (michael@massberg.org)
// AND JOSHUA D. REISS (josh.reiss@eecs.qmul.ac.uk)
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
// feed forward compressor
FFcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,meter,N) =
(si.bus(N) <:
(peak_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,N),si.bus(N))
)
:(ro.interleave(N,2):par(i,N,meter*_));
//--------------------`(co.)FBcompressor_N_chan`-------------------
// feed back N channel dynamic range compressor.
// `FBcompressor_N_chan` is a standard Faust function.
//
// #### Usage
//
// ```
// si.bus(N) : FBcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,meter,N) : si.bus(N)
// ```
//
// Where:
//
// * `strength`: strength of the compression (0 = no compression, 1 means hard limiting, >1 means over-compression)
// * `thresh`: dB level threshold above which compression kicks in
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
// * `knee`: a gradual increase in gain reduction around the threshold:
// Below thresh-(knee/2) there is no gain reduction,
// above thresh+(knee/2) there is the same gain reduction as without a knee,
// and in between there is a gradual increase in gain reduction.
// * `prePost`: places the level detector either at the input or after the gain computer;
// this turns it from a linear return-to-zero detector into a log domain return-to-threshold detector
// * `link`: the amount of linkage between the channels. 0 = each channel is independent, 1 = all channels have the same amount of gain reduction
// * `meter`: a gain reduction meter. It can be implemented like so:
// meter = _<:(_, (ba.linear2db:max(maxGR):meter_group((hbargraph("[1][unit:dB][tooltip: gain reduction in dB]", maxGR, 0))))):attach;
// or it can be omitted by defining 'meter = _'.
// * `N`: the number of channels of the compressor
// It uses a strength parameter instead of the traditional ratio, in order to be able to
// function as a hard limiter.
// For that you'd need a ratio of infinity:1, and you cannot express that in Faust.
// Sometimes even bigger ratios are useful:
// for example a group recording where one instrument is recorded with both a close microphone and a room microphone,
// and the instrument is loud enough in the room mic when playing loud, but you want to boost it when it is playing soft.
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * Digital Dynamic Range Compressor Design
// A Tutorial and Analysis
// DIMITRIOS GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk)
// MICHAEL MASSBERG (michael@massberg.org)
// AND JOSHUA D. REISS (josh.reiss@eecs.qmul.ac.uk)
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
FBcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,meter,N) =
(
(peak_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,N),si.bus(N))
:(ro.interleave(N,2):par(i,N,meter*_))
)~si.bus(N);
//--------------------`(co.)FFFBcompressor_N_chan`-------------------
// feed forward / feed back N channel dynamic range compressor.
// the feedback part has a much higher strength, so they end up sounding similar
// `FFFBcompressor_N_chan` is a standard Faust function.
//
// #### Usage
//
// ```
// si.bus(N) : FFFBcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,FBFF,meter,N) : si.bus(N)
// ```
//
// Where:
//
// * `strength`: strength of the compression (0 = no compression, 1 means hard limiting, >1 means over-compression)
// * `thresh`: dB level threshold above which compression kicks in
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
// * `knee`: a gradual increase in gain reduction around the threshold:
// Below thresh-(knee/2) there is no gain reduction,
// above thresh+(knee/2) there is the same gain reduction as without a knee,
// and in between there is a gradual increase in gain reduction.
// * `prePost`: places the level detector either at the input or after the gain computer;
// this turns it from a linear return-to-zero detector into a log domain return-to-threshold detector
// * `link`: the amount of linkage between the channels. 0 = each channel is independent, 1 = all channels have the same amount of gain reduction
// * `FFFB`: fade between feed forward (0) and feed back (1) compression.
// * `meter`: a gain reduction meter. It can be implemented like so:
// meter = _<:(_, (ba.linear2db:max(maxGR):meter_group((hbargraph("[1][unit:dB][tooltip: gain reduction in dB]", maxGR, 0))))):attach;
// * `N`: the number of channels of the compressor
// It uses a strength parameter instead of the traditional ratio, in order to be able to
// function as a hard limiter.
// For that you'd need a ratio of infinity:1, and you cannot express that in Faust.
// Sometimes even bigger ratios are useful:
// for example a group recording where one instrument is recorded with both a close microphone and a room microphone,
// and the instrument is loud enough in the room mic when playing loud, but you want to boost it when it is playing soft.
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * Digital Dynamic Range Compressor Design
// A Tutorial and Analysis
// DIMITRIOS GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk)
// MICHAEL MASSBERG (michael@massberg.org)
// AND JOSHUA D. REISS (josh.reiss@eecs.qmul.ac.uk)
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
FBFFcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,FBFF,meter,N) =
si.bus(N) <: si.bus(N*2):
(
((
(par(i, 2, peak_compression_gain_N_chan(strength*(1+((i==0)*2)),thresh,att,rel,knee,prePost,link,N)):ro.interleave(N,2):par(i, N, it.interpolate_linear(FBFF)))
,si.bus(N))
:(ro.interleave(N,2):par(i,N,meter*_))
)~si.bus(N)
);
//--------------------`(co.)RMS_compression_gain_mono`-------------------
// Mono RMS dynamic range compressor gain computer.
// `RMS_compression_gain_mono` is a standard Faust function
//
// #### Usage
//
// ```
// _ : RMS_compression_gain_mono(strength,thresh,att,rel,knee,prePost) : _
// ```
//
// Where:
//
// * `strength`: strength of the compression (0 = no compression, 1 means hard limiting, >1 means over-compression)
// * `thresh`: dB level threshold above which compression kicks in
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
// * `knee`: a gradual increase in gain reduction around the threshold:
// Below thresh-(knee/2) there is no gain reduction,
// above thresh+(knee/2) there is the same gain reduction as without a knee,
// and in between there is a gradual increase in gain reduction.
// * `prePost`: places the level detector either at the input or after the gain computer;
// this turns it from a linear return-to-zero detector into a log domain return-to-threshold detector
// It uses a strength parameter instead of the traditional ratio, in order to be able to
// function as a hard limiter.
// For that you'd need a ratio of infinity:1, and you cannot express that in Faust.
// Sometimes even bigger ratios are useful:
// for example a group recording where one instrument is recorded with both a close microphone and a room microphone,
// and the instrument is loud enough in the room mic when playing loud, but you want to boost it when it is playing soft.
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * Digital Dynamic Range Compressor Design
// A Tutorial and Analysis
// DIMITRIOS GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk)
// MICHAEL MASSBERG (michael@massberg.org)
// AND JOSHUA D. REISS (josh.reiss@eecs.qmul.ac.uk)
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
RMS_compression_gain_mono(strength,thresh,att,rel,knee,prePost) =
RMS(rel): ba.bypass1(prePost,si.lag_ud(att,0)) : ba.linear2db : gain_computer(strength,thresh,knee) : ba.bypass1((prePost*-1)+1,si.lag_ud(0,att)) : ba.db2linear
with {
gain_computer(strength,thresh,knee,level) =
select3((level>(thresh-(knee/2)))+(level>(thresh+(knee/2))),
0,
((level-thresh+(knee/2)):pow(2)/(2*knee)),
(level-thresh)
) : max(0)*-strength;
RMS(time) = ba.slidingRMS(s) with { s = ba.sec2samp(time):int:max(1); };
};
//--------------------`(co.)RMS_compression_gain_N_chan`-------------------
// RMS N channel dynamic range compressor gain computer.
// `RMS_compression_gain_N_chan` is a standard Faust function.
//
// #### Usage
//
// ```
// si.bus(N) : RMS_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,N) : si.bus(N)
// ```
//
// Where:
//
// * `strength`: strength of the compression (0 = no compression, 1 means hard limiting, >1 means over-compression)
// * `thresh`: dB level threshold above which compression kicks in
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
// * `knee`: a gradual increase in gain reduction around the threshold:
// Below thresh-(knee/2) there is no gain reduction,
// above thresh+(knee/2) there is the same gain reduction as without a knee,
// and in between there is a gradual increase in gain reduction.
// * `prePost`: places the level detector either at the input or after the gain computer;
// this turns it from a linear return-to-zero detector into a log domain return-to-threshold detector
// * `link`: the amount of linkage between the channels. 0 = each channel is independent, 1 = all channels have the same amount of gain reduction
// * `N`: the number of channels of the compressor
// It uses a strength parameter instead of the traditional ratio, in order to be able to
// function as a hard limiter.
// For that you'd need a ratio of infinity:1, and you cannot express that in Faust.
// Sometimes even bigger ratios are useful:
// for example a group recording where one instrument is recorded with both a close microphone and a room microphone,
// and the instrument is loud enough in the room mic when playing loud, but you want to boost it when it is playing soft.
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * Digital Dynamic Range Compressor Design
// A Tutorial and Analysis
// DIMITRIOS GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk)
// MICHAEL MASSBERG (michael@massberg.org)
// AND JOSHUA D. REISS (josh.reiss@eecs.qmul.ac.uk)
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
RMS_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,1) =
RMS_compression_gain_mono(strength,thresh,att,rel,knee,prePost);
RMS_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,N) =
par(i, N, RMS_compression_gain_mono(strength,thresh,att,rel,knee,prePost))
<:(si.bus(N),(ba.parallelMin(N)<:si.bus(N))):ro.interleave(N,2):par(i,N,(it.interpolate_linear(link)));
//--------------------`(co.)RMS_FFFBcompressor_N_chan`-------------------
// RMS feed forward / feed back N channel dynamic range compressor.
// the feedback part has a much higher strength, so they end up sounding similar
// `RMS_FFFBcompressor_N_chan` is a standard Faust function.
//
// #### Usage
//
// ```
// si.bus(N) : RMS_FFFBcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,FBFF,meter,N) : si.bus(N)
// ```
//
// Where:
//
// * `strength`: strength of the compression (0 = no compression, 1 means hard limiting, >1 means over-compression)
// * `thresh`: dB level threshold above which compression kicks in
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
// * `knee`: a gradual increase in gain reduction around the threshold:
// Below thresh-(knee/2) there is no gain reduction,
// above thresh+(knee/2) there is the same gain reduction as without a knee,
// and in between there is a gradual increase in gain reduction.
// * `prePost`: places the level detector either at the input or after the gain computer;
// this turns it from a linear return-to-zero detector into a log domain return-to-threshold detector
// * `link`: the amount of linkage between the channels. 0 = each channel is independent, 1 = all channels have the same amount of gain reduction
// * `FFFB`: fade between feed forward (0) and feed back (1) compression.
// * `meter`: a gain reduction meter. It can be implemented like so:
// meter = _<:(_, (ba.linear2db:max(maxGR):meter_group((hbargraph("[1][unit:dB][tooltip: gain reduction in dB]", maxGR, 0))))):attach;
// * `N`: the number of channels of the compressor
// It uses a strength parameter instead of the traditional ratio, in order to be able to
// function as a hard limiter.
// For that you'd need a ratio of infinity:1, and you cannot express that in Faust.
// Sometimes even bigger ratios are useful:
// for example a group recording where one instrument is recorded with both a close microphone and a room microphone,
// and the instrument is loud enough in the room mic when playing loud, but you want to boost it when it is playing soft.
// to save CPU we cheat a bit, in a similar way as in the original libs:
// instead of crosfading between two sets of gain calculators as above,
// we take the abs of the audio from both the FF and FB, and crossfade between those,
// and feed that into one set of gain calculators
// again the strength is much higher when in FB mode, but implemented differently
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * Digital Dynamic Range Compressor Design
// A Tutorial and Analysis
// DIMITRIOS GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk)
// MICHAEL MASSBERG (michael@massberg.org)
// AND JOSHUA D. REISS (josh.reiss@eecs.qmul.ac.uk)
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
RMS_FBFFcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,FBFF,meter,N) =
si.bus(N) <: si.bus(N*2):
(
(
(
(ro.interleave(N,2):par(i, N*2, abs) :par(i, N, it.interpolate_linear(FBFF)) : RMS_compression_gain_N_chan(strength*(1+(((FBFF*-1)+1)*1)),thresh,att,rel,knee,prePost,link,N))
,si.bus(N)
)
:(ro.interleave(N,2):par(i,N,meter*_))
)~si.bus(N)
);
//--------------------`(co.)RMS_FBcompressor_peak_limiter_N_chan`-------------------
// N channel RMS feed back compressor into peak limiter feeding back into the FB compressor.
// By combining them this way, they complement each other optimally:
// The RMS compressor doesn't have to deal with the peaks,
// and the peak limiter get's spared from the steady state signal.
// the feedback part has a much higher strength, so they end up sounding similar
// `RMS_FBcompressor_peak_limiter_N_chan` is a standard Faust function.
//
// #### Usage
//
// ```
// si.bus(N) : RMS_FBcompressor_peak_limiter_N_chan(strength,thresh,threshLim,att,rel,knee,link,meter,N) : si.bus(N)
// ```
//
// Where:
//
// * `strength`: strength of the compression (0 = no compression, 1 means hard limiting, >1 means over-compression)
// * `thresh`: dB level threshold above which compression kicks in
// * `threshLim`: dB level threshold above which the brick wall limiter kicks in
// * `att`: attack time = time constant (sec) when level & compression going up
// this is also used as the release time of the limiter
// * `rel`: release time = time constant (sec) coming out of compression
// * `knee`: a gradual increase in gain reduction around the threshold:
// Below thresh-(knee/2) there is no gain reduction,
// above thresh+(knee/2) there is the same gain reduction as without a knee,
// and in between there is a gradual increase in gain reduction.
// the limiter uses a knee half this size
// * `link`: the amount of linkage between the channels. 0 = each channel is independent, 1 = all channels have the same amount of gain reduction
// * `meter`: a gain reduction meter. It can be implemented like so:
// meter = _<:(_, (ba.linear2db:max(maxGR):meter_group((hbargraph("[1][unit:dB][tooltip: gain reduction in dB]", maxGR, 0))))):attach;
// * `N`: the number of channels of the compressor
// It uses a strength parameter instead of the traditional ratio, in order to be able to
// function as a hard limiter.
// For that you'd need a ratio of infinity:1, and you cannot express that in Faust.
// Sometimes even bigger ratios are useful:
// for example a group recording where one instrument is recorded with both a close microphone and a room microphone,
// and the instrument is loud enough in the room mic when playing loud, but you want to boost it when it is playing soft.
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * Digital Dynamic Range Compressor Design
// A Tutorial and Analysis
// DIMITRIOS GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk)
// MICHAEL MASSBERG (michael@massberg.org)
// AND JOSHUA D. REISS (josh.reiss@eecs.qmul.ac.uk)
//------------------------------------------------------------
// Author: Bart Brouns
// License: GPLv3
RMS_FBcompressor_peak_limiter_N_chan(strength,thresh,threshLim,att,rel,knee,link,meter,N) =
(
(
(
(RMS_compression_gain_N_chan(strength,thresh,att,rel,knee,0,link,N))
,si.bus(N)
):(ro.interleave(N,2):par(i,N,meter*_))
):FFcompressor_N_chan(1,threshLim,0,att:min(rel),knee*0.5,0,link,meter,N)
)~si.bus(N);
//=============================Original versions section=============================
// The functions in this section are largely superseded by the limiters above, but we
// retain them for backward compatibility and for situations in which a more permissive,
// MIT-style license is required.
//========================================================================================
//=============================Functions Reference========================================
//========================================================================================
//--------------------`(co.)compressor_lad_mono`-------------------
// Mono dynamic range compressor with lookahead delay.
// `compressor_lad_mono` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : compressor_lad_mono(lad,ratio,thresh,att,rel) : _
// ```
//
// Where:
//
// * `lad`: lookahead delay in seconds (nonnegative) - gets rounded to nearest sample.
// The effective attack time is a good setting.
// * `ratio`: compression ratio (1 = no compression, >1 means compression)
// Ratios: 4 is moderate compression, 8 is strong compression,
// 12 is mild limiting, and 20 is pretty hard limiting at the threshold.
// * `thresh`: dB level threshold above which compression kicks in (0 dB = max level)
// * `att`: attack time = time constant (sec) when level & compression are going up
// * `rel`: release time = time constant (sec) coming out of compression
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * <https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html>
// * Albert Graef's "faust2pd"/examples/synth/compressor_.dsp
// * More features: <https://github.com/magnetophon/faustCompressors>
//------------------------------------------------------------
declare compressor_lad_mono author "Julius O. Smith III";
declare compressor_lad_mono copyright
"Copyright (C) 2014-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare compressor_lad_mono license "MIT-style STK-4.3 license";
compressor_lad_mono(lad,ratio,thresh,att,rel,x)
= x@max(0,floor(0.5+ma.SR*lad)) * compression_gain_mono(ratio,thresh,att,rel,x);
//--------------------`(co.)compressor_mono`-------------------
// Mono dynamic range compressors.
// `compressor_mono` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : compressor_mono(ratio,thresh,att,rel) : _
// ```
//
// Where:
//
// * `ratio`: compression ratio (1 = no compression, >1 means compression)
// Ratios: 4 is moderate compression, 8 is strong compression,
// 12 is mild limiting, and 20 is pretty hard limiting at the threshold.
// * `thresh`: dB level threshold above which compression kicks in (0 dB = max level)
// * `att`: attack time = time constant (sec) when level & compression are going up
// * `rel`: release time = time constant (sec) coming out of compression
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * <https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html>
// * Albert Graef's "faust2pd"/examples/synth/compressor_.dsp
// * More features: <https://github.com/magnetophon/faustCompressors>
//------------------------------------------------------------
declare compressor_mono author "Julius O. Smith III";
declare compressor_mono copyright
"Copyright (C) 2014-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare compressor_mono license "MIT-style STK-4.3 license";
compressor_mono = compressor_lad_mono(0);
//--------------------`(co.)compressor_stereo`-------------------
// Stereo dynamic range compressors.
//
// #### Usage
//
// ```
// _,_ : compressor_stereo(ratio,thresh,att,rel) : _,_
// ```
//
// Where:
//
// * `ratio`: compression ratio (1 = no compression, >1 means compression)
// * `thresh`: dB level threshold above which compression kicks in (0 dB = max level)
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * <https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html>
// * Albert Graef's "faust2pd"/examples/synth/compressor_.dsp
// * More features: <https://github.com/magnetophon/faustCompressors>
//------------------------------------------------------------
declare compressor_stereo author "Julius O. Smith III";
declare compressor_stereo copyright
"Copyright (C) 2014-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare compressor_stereo license "MIT-style STK-4.3 license";
compressor_stereo(ratio,thresh,att,rel,x,y) = cgm*x, cgm*y with {
cgm = compression_gain_mono(ratio,thresh,att,rel,abs(x)+abs(y));
};
//--------------------`(co.)compression_gain_mono`-------------------
// Compression-gain calculation for dynamic range compressors.
//
// #### Usage
//
// ```
// _ : compression_gain_mono(ratio,thresh,att,rel) : _
// ```
//
// Where:
//
// * `ratio`: compression ratio (1 = no compression, >1 means compression)
// * `thresh`: dB level threshold above which compression kicks in (0 dB = max level)
// * `att`: attack time = time constant (sec) when level & compression going up
// * `rel`: release time = time constant (sec) coming out of compression
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Dynamic_range_compression>
// * <https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html>
// * Albert Graef's "faust2pd"/examples/synth/compressor_.dsp
// * More features: <https://github.com/magnetophon/faustCompressors>
//------------------------------------------------------------
declare compression_gain_mono author "Julius O. Smith III";
declare compression_gain_mono copyright
"Copyright (C) 2014-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare compression_gain_mono license "MIT-style STK-4.3 license";
compression_gain_mono(ratio,thresh,att,rel) =
an.amp_follower_ar(att,rel) : ba.linear2db : outminusindb(ratio,thresh) :
kneesmooth(att) : ba.db2linear
with {
// kneesmooth(att) installs a "knee" in the dynamic-range compression,
// where knee smoothness is set equal to half that of the compression-attack.
// A general 'knee' parameter could be used instead of tying it to att/2:
kneesmooth(att) = si.smooth(ba.tau2pole(att/2.0));
// compression gain in dB:
outminusindb(ratio,thresh,level) = max(level-thresh,0.0) * (1.0/max(ma.EPSILON,float(ratio))-1.0);
// Note: "float(ratio)" REQUIRED when ratio is an integer > 1!
};
//----------------`(co.)limiter_1176_R4_mono`----------------------
// A limiter guards against hard-clipping. It can be
// implemented as a compressor having a high threshold (near the
// clipping level), fast attack, and high ratio. Since
// the compression ratio is so high, some knee smoothing is
// desirable (for softer limiting). This example is intended
// to get you started using compressors as limiters, so all
// parameters are hardwired here to nominal values.
// Ratio: 4 (moderate compression)
// See compressor_mono() comments for a guide to other choices.
// Mike Shipley likes this (lowest) setting on the 1176.
// (Grammy award-winning mixer for Queen, Tom Petty, etc.)
// Thresh: -6 dB, meaning 4:1 compression begins at amplitude 1/2.
// Att: 800 MICROseconds (Note: scaled by ratio in the 1176)
// The 1176 range is said to be 20-800 microseconds.
// Faster attack gives "more bite" (e.g. on vocals),
// and makes hard-clipping less likely on fast overloads.
// Rel: 0.5 s (Note: scaled by ratio in the 1176)
// The 1176 range is said to be 50-1100 ms.
// The 1176 also has a "bright, clear eq effect" (use filters.lib if desired).
// `limiter_1176_R4_mono` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : limiter_1176_R4_mono : _;
// ```
//
// #### Reference:
//
// <http://en.wikipedia.org/wiki/1176_Peak_Limiter>
//------------------------------------------------------------
declare limiter_1176_R4_mono author "Julius O. Smith III";
declare limiter_1176_R4_mono copyright
"Copyright (C) 2014-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare limiter_1176_R4_mono license "MIT-style STK-4.3 license";
limiter_1176_R4_mono = compressor_mono(4,-6,0.0008,0.5);
//-------------------`(co.)limiter_1176_R4_stereo`---------------------
// A limiter guards against hard-clipping. It can be
// implemented as a compressor having a high threshold (near the
// clipping level), fast attack and release, and high ratio. Since
// the ratio is so high, some knee smoothing is
// desirable ("soft limiting"). This example is intended
// to get you started using compressor_* as a limiter, so all
// parameters are hardwired to nominal values here.
// Ratios: 4 (moderate compression), 8 (severe compression),
// 12 (mild limiting), or 20 to 1 (hard limiting)
// Att: 20-800 MICROseconds (Note: scaled by ratio in the 1176)
// Rel: 50-1100 ms (Note: scaled by ratio in the 1176)
// Mike Shipley likes 4:1 (Grammy-winning mixer for Queen, Tom Petty, etc.)
// Faster attack gives "more bite" (e.g. on vocals)
// He hears a bright, clear eq effect as well (not implemented here)
//
// #### Usage
//
// ```
// _,_ : limiter_1176_R4_stereo : _,_;
// ```
//
// #### Reference:
//
// <http://en.wikipedia.org/wiki/1176_Peak_Limiter>
//------------------------------------------------------------
declare limiter_1176_R4_stereo author "Julius O. Smith III";
declare limiter_1176_R4_stereo copyright
"Copyright (C) 2014-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare limiter_1176_R4_stereo license "MIT-style STK-4.3 license";
limiter_1176_R4_stereo = compressor_stereo(4,-6,0.0008,0.5);
//-----------------------`(co.)limiter_lad_N`---------------------------------
// N-channel lookahead limiter inspired by IOhannes Zmölnig's post, which is
// in turn based on the thesis by Peter Falkner "Entwicklung eines digitalen
// Stereo-Limiters mit Hilfe des Signalprozessors DSP56001".
// This version of the limiter uses a peak-holder with smoothed
// attack and release based on tau time constant filters.
//
// It is also possible to use a time constant that is 2*PI*tau by dividing
// the attack and release times by 2*PI. This time constant allows for
// the amplitude profile to reach 1 - e^(-2pi) of the final
// peak after the attack time. The input path can be delayed by the same
// amount as the attack time to synchronise input and amplitude profile,
// realising a system that is particularly effective as a colourless
// (ideally) brickwall limiter.
//
// Note that the effectiveness of the ceiling settings are dependent on
// the other parameters, especially the time constant used for the
// smoothing filters and the lookahead delay.
//
// Similarly, the colourless characteristics are also dependent on attack,
// hold, and release times. Since fluctuations above ~15 Hz are
// perceived as timbral effects, [Vassilakis and Kendall 2010] it is
// reasonable to set the attack time to 1/15 seconds for a smooth amplitude
// modulation. On the other hand, the hold time can be set to the
// peak-to-peak period of the expected lowest frequency in the signal,
// which allows for minimal distortion of the low frequencies. The
// release time can then provide a perceptually linear and gradual gain
// increase determined by the user for any specific application.
//
// The scaling factor for all the channels is determined by the loudest peak
// between them all, so that amplitude ratios between the signals are kept.
//
// #### Usage
//
// ```
// si.bus(N) : limiter_lad_N(N, LD, ceiling, attack, hold, release) :
// si.bus(N);
// ```
//
// Where:
//
// * `N` is the number of channels, known at compile-time.
// * `LD` is the lookahead delay in seconds, known at compile-time.
// * `ceiling` is the linear amplitude output limit.
// * `attack` is the attack time in seconds.
// * `hold` is the hold time in seconds.
// * `release` is the release time in seconds.
//
// Example for a stereo limiter: limiter_lad_N(2, .01, 1, .01, .1, 1);
//
// #### Reference:
//
// <http://iem.at/~zmoelnig/publications/limiter/>.
//------------------------------------------------------------------------------
declare limiter_lad_N author "Dario Sanfilippo";
declare limiter_lad_N copyright "Copyright (C) 2020 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare limiter_lad_N license "GPLv3 license";
limiter_lad_N(N, LD, ceiling, attack, hold, release) =
si.bus(N) <: par(i, N, @ (LD * ma.SR)),
(scaling <: si.bus(N)) : ro.interleave(N, 2) : par(i, N, *)
with {
scaling = ceiling / max(amp_profile, ma.EPSILON) : min(1);
amp_profile = par(i, N, abs) : maxN(N) : ba.peakholder(hold * ma.SR) :
att_smooth(attack) : rel_smooth(release);
att_smooth(time, in) = si.smooth(ba.tau2pole(time), in);
rel_smooth(time, in) = an.peak_envelope(time, in);
maxN(1) = _;
maxN(2) = max;
maxN(N) = max(maxN(N - 1));
};
//-------------`(co.)limiter_lad_mono`----------------------------------------
//
// Specialised case of limiter_lad_N: mono limiter.
//
// #### Usage
//
// ```
// _ : limiter_lad_mono(LD, ceiling, attack, hold, release) : _;
// ```
//
// Where:
//
// * `LD` is the lookahead delay in seconds, known at compile-time.
// * `ceiling` is the linear amplitude output limit.
// * `attack` is the attack time in seconds.
// * `hold` is the hold time in seconds.
// * `release` is the release time in seconds.
//
// #### Reference:
//
// <http://iem.at/~zmoelnig/publications/limiter/>.
declare limiter_lad_mono author "Dario Sanfilippo";
declare limiter_lad_mono copyright "Copyright (C) 2020 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare limiter_lad_mono license "GPLv3 license";
limiter_lad_mono(LD) = limiter_lad_N(1, LD);
//-------------`(co.)limiter_lad_stereo`--------------------------------------
//
// Specialised case of limiter_lad_N: stereo limiter.
//
// #### Usage
//
// ```
// _ , _ : limiter_lad_stereo(LD, ceiling, attack, hold, release) : _ , _;
// ```
//
// Where:
//
// * `LD` is the lookahead delay in seconds, known at compile-time.
// * `ceiling` is the linear amplitude output limit.
// * `attack` is the attack time in seconds.
// * `hold` is the hold time in seconds.
// * `release` is the release time in seconds.
//
// #### Reference:
//
// <http://iem.at/~zmoelnig/publications/limiter/>.
declare limiter_lad_stereo author "Dario Sanfilippo";
declare limiter_lad_stereo copyright "Copyright (C) 2020 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare limiter_lad_stereo license "GPLv3 license";
limiter_lad_stereo(LD) = limiter_lad_N(2, LD);
//-------------`(co.)limiter_lad_quad`----------------------------------------
//
// Specialised case of limiter_lad_N: quadraphonic limiter.
//
// #### Usage
//
// ```
// si.bus(4) : limiter_lad_quad(LD, ceiling, attack, hold, release) :
// si.bus(4);
// ```
//
// Where:
//
// * `LD` is the lookahead delay in seconds, known at compile-time.
// * `ceiling` is the linear amplitude output limit.
// * `attack` is the attack time in seconds.
// * `hold` is the hold time in seconds.
// * `release` is the release time in seconds.
//
// #### Reference:
//
// <http://iem.at/~zmoelnig/publications/limiter/>.
declare limiter_lad_quad author "Dario Sanfilippo";
declare limiter_lad_quad copyright "Copyright (C) 2020 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare limiter_lad_quad license "GPLv3 license";
limiter_lad_quad(LD) = limiter_lad_N(4, LD);
//-------------`(co.)limiter_lad_bw`-----------------------------------------
//
// Specialised case of limiter_lad_N and ready-to-use unit-amplitude mono
// limiting function. This implementation, in particular, uses 2pi*tau
// time constant filters for attack and release smoothing with
// synchronised input and gain signals.
//
// This function's best application is to be used as a brickwall limiter with
// the least colouring artefacts while keeping a not-so-slow release curve.
// Tests have shown that, given a pop song with 60 dB of amplification
// and a 0-dB-ceiling, the loudest peak recorded was ~0.38 dB.
//
// #### Usage
//
// ```
// _ : limiter_lad_bw : _;
// ```
//
// #### Reference:
//
// <http://iem.at/~zmoelnig/publications/limiter/>.
declare limiter_lad_bw author "Dario Sanfilippo";
declare limiter_lad_bw copyright "Copyright (C) 2020 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare limiter_lad_bw license "GPLv3 license";
limiter_lad_bw = limiter_lad_mono(.01, 1, .01 / twopi, .1, 1 / twopi)
with {
twopi = 2 * ma.PI;
};
|