File: routeSchema.cpp

package info (click to toggle)
faust 2.79.3%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 397,496 kB
  • sloc: cpp: 278,433; ansic: 116,164; javascript: 18,529; vhdl: 14,052; sh: 13,884; java: 5,900; objc: 3,852; python: 3,222; makefile: 2,655; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 110; tcl: 26
file content (378 lines) | stat: -rw-r--r-- 11,214 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/************************************************************************
 ************************************************************************
    FAUST compiler
    Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/

#include <algorithm>
#include <iostream>

#include "exception.hh"
#include "global.hh"
#include "routeSchema.h"

using namespace std;

/**
 * Build n x m cable routing
 */

schema* makeRouteSchema(unsigned int inputs, unsigned int outputs, const std::vector<int>& routes)
{
    // determine the optimal size of the box
    double minimal = 3 * dWire;
    double h       = 2 * dVert + max(minimal, max(inputs, outputs) * dWire);
    double w       = 2 * dHorz + max(minimal, h * 0.75);

    return new routeSchema(inputs, outputs, w, h, routes);
}

/**
 * Build a simple colored routeSchema with a certain number of
 * inputs and outputs, a text to be displayed, and an optional link.
 * The length of the text as well as the number of inputs and outputs
 * are used to compute the size of the routeSchema
 */
routeSchema::routeSchema(unsigned int inputs, unsigned int outputs, double width, double height,
                         const std::vector<int>& routes)

    : schema(inputs, outputs, width, height),
      fText(""),
      fColor("#EEEEAA"),
      fLink(""),
      fRoutes(routes)
{
    for (unsigned int i = 0; i < inputs; i++) {
        fInputPoint.push_back(point(0, 0));
    }
    for (unsigned int i = 0; i < outputs; i++) {
        fOutputPoint.push_back(point(0, 0));
    }
}

/**
 * Define the graphic position of the routeSchema. Computes the graphic
 * position of all the elements, in particular the inputs and outputs.
 * This method must be called before draw(), otherwise draw is not allowed
 */
void routeSchema::place(double x, double y, int orientation)
{
    beginPlace(x, y, orientation);

    placeInputPoints();
    placeOutputPoints();

    endPlace();
}

/**
 * Returns an input point
 */
point routeSchema::inputPoint(unsigned int i) const
{
    faustassert(placed());
    faustassert(i < inputs());
    return fInputPoint[i];
}

/**
 * Returns an output point
 */
point routeSchema::outputPoint(unsigned int i) const
{
    faustassert(placed());
    faustassert(i < outputs());
    return fOutputPoint[i];
}

/**
 * Computes the input points according to the position and the
 * orientation of the routeSchema
 */
void routeSchema::placeInputPoints()
{
    int N = inputs();

    if (orientation() == kLeftRight) {
        double px = x();
        double py = y() + (height() - dWire * (N - 1)) / 2;

        for (int i = 0; i < N; i++) {
            fInputPoint[i] = point(px, py + i * dWire);
        }

    } else {
        double px = x() + width();
        double py = y() + height() - (height() - dWire * (N - 1)) / 2;

        for (int i = 0; i < N; i++) {
            fInputPoint[i] = point(px, py - i * dWire);
        }
    }
}

/**
 * Computes the output points according to the position and the
 * orientation of the routeSchema
 */
void routeSchema::placeOutputPoints()
{
    int N = outputs();

    if (orientation() == kLeftRight) {
        double px = x() + width();
        double py = y() + (height() - dWire * (N - 1)) / 2;

        for (int i = 0; i < N; i++) {
            fOutputPoint[i] = point(px, py + i * dWire);
        }

    } else {
        double px = x();
        double py = y() + height() - (height() - dWire * (N - 1)) / 2;

        for (int i = 0; i < N; i++) {
            fOutputPoint[i] = point(px, py - i * dWire);
        }
    }
}

/**
 * Draw the routeSchema on the device. This method can only
 * be called after the routeSchema have been placed
 */
void routeSchema::draw(device& dev)
{
    faustassert(placed());

    if (gGlobal->gDrawRouteFrame) {
        drawRectangle(dev);
        // drawText(dev);
        drawOrientationMark(dev);
        drawInputArrows(dev);
    }
}

/**
 * Draw the colored rectangle with the optional link
 */
void routeSchema::drawRectangle(device& dev)
{
    dev.rect(x() + dHorz, y() + dVert, width() - 2 * dHorz, height() - 2 * dVert, fColor.c_str(),
             fLink.c_str());
}

/**
 * Draw the text centered on the box
 */
void routeSchema::drawText(device& dev)
{
    dev.text(x() + width() / 2, y() + height() / 2, fText.c_str(), fLink.c_str());
}

/**
 * Draw the orientation mark, a small point that indicates
 * the first input (like integrated circuits)
 */
void routeSchema::drawOrientationMark(device& dev)
{
    double px, py;

    if (orientation() == kLeftRight) {
        px = x() + dHorz;
        py = y() + dVert;
    } else {
        px = x() + width() - dHorz;
        py = y() + height() - dVert;
    }

    dev.markSens(px, py, orientation());
}

/**
 * Draw horizontal arrows from the input points to the
 * routeSchema rectangle
 */
void routeSchema::drawInputArrows(device& dev)
{
    double dx = (orientation() == kLeftRight) ? dHorz : -dHorz;

    for (unsigned int i = 0; i < inputs(); i++) {
        point p = fInputPoint[i];
        dev.fleche(p.x + dx, p.y, 0, orientation());
    }
}

/**
 * Draw horizontal arrows from the input points to the
 * routeSchema rectangle
 */
bool routeSchema::isValidRoute(int src, int dst) const
{
    return (src > 0) && (src <= (int)inputs()) && (dst > 0) && (dst <= (int)outputs());
}

void routeSchema::collectTraits(collector& c)
{
    collectInputWires(c);
    collectOutputWires(c);
    // additional routing traits
    for (unsigned int i = 0; i < fRoutes.size() - 1; i += 2) {
        if (isValidRoute(fRoutes[i], fRoutes[i + 1])) {
            int   src = fRoutes[i] - 1;
            int   dst = fRoutes[i + 1] - 1;
            point p1  = fInputPoint[src];
            point p2  = fOutputPoint[dst];
            // cerr << "add traits: " << p1.x << 'x' << p1.y << " -> " << p2.x << "x" << p2.y <<
            // endl;
            double dx = (orientation() == kLeftRight) ? dHorz : -dHorz;
            c.addTrait(trait(point(p1.x + dx, p1.y), point(p2.x - dx, p2.y)));
        }
    }
}

/**
 * Draw horizontal arrows from the input points to the
 * routeSchema rectangle
 */
void routeSchema::collectInputWires(collector& c)
{
    double dx = (orientation() == kLeftRight) ? dHorz : -dHorz;

    for (unsigned int i = 0; i < inputs(); i++) {
        point p = fInputPoint[i];
        c.addTrait(trait(point(p.x, p.y), point(p.x + dx, p.y)));  // in->out direction
        c.addInput(point(p.x + dx, p.y));
    }
}

/**
 * Draw horizontal line from the routeSchema rectangle to the
 * output points
 */
void routeSchema::collectOutputWires(collector& c)
{
    double dx = (orientation() == kLeftRight) ? dHorz : -dHorz;

    for (unsigned int i = 0; i < outputs(); i++) {
        point p = fOutputPoint[i];
        c.addTrait(trait(point(p.x - dx, p.y), point(p.x, p.y)));  // in->out direction
        c.addOutput(point(p.x - dx, p.y));
    }
}

#if 0
/**
 * Build n x m cable routing
 */
routeSchema::routeSchema(unsigned int n, unsigned int m, const std::vector<int>& routes)
    : schema(n, m, max(n, m) * dWire, max(n, m) * dWire)
{
    fRoutes = routes;
    for (unsigned int i = 0; i < n; i++) fInputPoints.push_back(point(0, 0));
    for (unsigned int i = 0; i < m; i++) fOutputPoints.push_back(point(0, 0));
}

/**
 * Place the communication points vertically spaced by dWire
 */
void routeSchema::place(double ox, double oy, int orientation)
{
    // std::cerr << "\nENTER route place of " << this << " at " << ox << 'x' << oy << endl;
    double diy = (height() - inputs() * dWire + dWire) / 2.0;
    double doy = (height() - outputs() * dWire + dWire) / 2.0;

    beginPlace(ox, oy, orientation);
    if (orientation == kLeftRight) {
        // std::cerr << "orientation == kLeftRight" << endl;
        for (unsigned int i = 0; i < inputs(); i++) {
            fInputPoints[i] = point(ox, oy + diy + i * dWire);
            // std::cerr << "input point :" << fInputPoints[i].x << 'x' << fInputPoints[i].y << endl;
        }
        for (unsigned int i = 0; i < outputs(); i++) {
            fOutputPoints[i] = point(ox + width(), oy + doy + i * dWire);
            // std::cerr << "output point: " << fInputPoints[i].x << 'x' << fInputPoints[i].y << endl;
        }
    } else {
        // std::cerr << "orientation == kRightLeft" << endl;
        for (unsigned int i = 0; i < outputs(); i++) {
            fOutputPoints[i] = point(ox, oy + height() - doy - i * dWire);
            // std::cerr << "output point: " << fInputPoints[i].x << 'x' << fInputPoints[i].y << endl;
        }
        for (unsigned int i = 0; i < inputs(); i++) {
            fInputPoints[i] = point(ox + width(), oy + height() - diy - i * dWire);
            // std::cerr << "input point :" << fInputPoints[i].x << 'x' << fInputPoints[i].y << endl;
        }
    }
    endPlace();
    // std::cerr << "EXIT route place " << ox << 'x' << oy << "\n" << endl;
}

/**
 * Nothing to draw. Actual drawing will take place when the wires
 * are enlargered
 */
void routeSchema::draw(device& dev)
{
}

/**
 * Nothing to collect. Actual collect will take place when the wires
 * are enlargered
 */
void routeSchema::collectTraits(collector& c)
{
    faustassert(placed());

    // draw the connections between them
    // std::cerr << "fRoutes.size() = " << fRoutes.size() << endl;
    if (fRoutes.size() >= 2) {
        unsigned int m = fRoutes.size() - 1;
        for (unsigned int i = 0; i < m; i += 2) {
            unsigned int src = fRoutes[i];
            unsigned int dst = fRoutes[i + 1];
            if ((src > 0) && (src <= inputs()) && (dst > 0) && (dst <= outputs())) {
                c.addTrait(trait(point(fInputPoints[src].x, fInputPoints[src].y),
                                 point(fOutputPoints[dst].x, fOutputPoints[dst].y)));

                // c.addInput(fInputPoints[src]);
                // c.addOutput(fOutputPoints[dst]);
            }
        }
    }
}

/**
 *input and output points are the same as the width is 0
 */
point routeSchema::inputPoint(unsigned int i) const
{
    faustassert(i < inputs());
    return fInputPoints[i];
}

/**
 *input and output points are the same as the width is 0
 */
point routeSchema::outputPoint(unsigned int i) const
{
    faustassert(i < outputs());
    return fOutputPoints[i];
}

#endif