File: intervalAcos.cpp

package info (click to toggle)
faust 2.79.3%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 397,496 kB
  • sloc: cpp: 278,433; ansic: 116,164; javascript: 18,529; vhdl: 14,052; sh: 13,884; java: 5,900; objc: 3,852; python: 3,222; makefile: 2,655; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 110; tcl: 26
file content (71 lines) | stat: -rw-r--r-- 2,839 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/* Copyright 2023 Yann ORLAREY
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <algorithm>
#include <functional>
#include <random>

#include "check.hh"
#include "interval_algebra.hh"
#include "interval_def.hh"

namespace itv {
//------------------------------------------------------------------------------------------
// Interval Acos
// interval Acos(const interval& x);
// void testAcos();

static const interval AcosDomain(-1, 1, 0);  // this interval needs 0 digits of precision

interval interval_algebra::Acos(const interval& x)
{
    interval i = intersection(AcosDomain, x);  // TODO: warn about interval violations
    if (i.isEmpty()) {
        return empty();
    }

    double v = 0;  // value at which the min slope is attained, zero if it is present
    int sign = 1;  // whether we compute the difference between f(x) and f(x+ε) or f(x-ε), chosing
                   // the point that lies in the interval
    if (!i.has(0)) {  // if zero is not present, it's the bound closer to zero
        v    = minValAbs(i);
        sign = signMinValAbs(i);
    }

    int precision = exactPrecisionUnary(acos, v, sign * pow(2, i.lsb()));

    if ((precision == INT_MIN) || taylor_lsb) {
        precision = floor(i.lsb() - (double)log2(1 - v * v) / 2);
    }

    return {acos(i.hi()), acos(i.lo()), precision};
}

void interval_algebra::testAcos()
{
    analyzeUnaryMethod(10, 1000, "acos", interval(-1, 1, -1), acos, &interval_algebra::Acos);
    analyzeUnaryMethod(10, 1000, "acos", interval(-1, 1, -5), acos, &interval_algebra::Acos);
    analyzeUnaryMethod(10, 1000, "acos", interval(-1, 1, -10), acos, &interval_algebra::Acos);
    analyzeUnaryMethod(10, 1000, "acos", interval(-1, 1, -15), acos, &interval_algebra::Acos);
    analyzeUnaryMethod(10, 1000, "acos", interval(-1, 1, -20), acos, &interval_algebra::Acos);

    // very fine input precision
    /* analyzeUnaryMethod(10, 1000, "acos", interval(-1, 1, -100), acos, &interval_algebra::Acos);
    analyzeUnaryMethod(10, 1000, "acos", interval(-1, -0.85, -100), acos, &interval_algebra::Acos);
    analyzeUnaryMethod(10, 1000, "acos", interval(0.85, 1, -100), acos, &interval_algebra::Acos);

    // out of bounds input interval
    analyzeUnaryMethod(10, 1000, "acos", interval(-2, 2, -20), acos, &interval_algebra::Acos);*/
}
}  // namespace itv