1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/* Copyright 2023 Yann ORLAREY
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <cassert>
#include <functional>
#include <random>
#include "check.hh"
#include "interval_algebra.hh"
#include "interval_def.hh"
namespace itv {
//------------------------------------------------------------------------------------------
// Interval Pow
// interval Pow(const interval& x, const interval& y);
// void testPow();
static const interval domainx = {0, HUGE_VAL, 0};
/**
* @brief Interval elevated to an integer power
*/
static interval ipow(const interval& x, int k)
{
assert(k >= 0);
if (k == 0) {
return interval{1, 1, 0};
}
// explicit expression because passing an anonymous function to exactPrecisionUnary is
// complicated
int precision = x.lsb() * k; // if x contains 0: finest precision is attained in 0
if (!x.hasZero()) {
double v = minValAbs(x);
int sign = signMinValAbs(x);
int p1 = k * (int)log2(abs(v));
int p2 = 0;
double u = pow(2, x.lsb()); // ulp
double delta = abs(pow(1 + sign * u / v, k) - 1);
if (delta == 0) { // in case of u << x
p2 = floor((double)log2(k) + x.lsb() -
(double)log2(abs(v))); // (1 + u/v)^k - 1 ≃ k*u/v if u/v very small
} else {
p2 = floor((double)log2(delta));
}
precision = p1 + p2;
}
if ((k & 1) == 0) {
// k is even
double z0 = std::pow(x.lo(), k);
double z1 = std::pow(x.hi(), k);
return {
x.hasZero()
? 0
: std::min(z0,
z1), // 0 is in the output interval only if it is in the input interval
std::max(z0, z1), precision};
}
// k is odd
return {std::pow(x.lo(), k), std::pow(x.hi(), k), precision};
}
/**
* @brief Interval elevated to an interval power
*/
interval interval_algebra::fPow(const interval& x, const interval& y)
{
if (x.isEmpty() || y.isEmpty()) {
return empty();
}
assert(x.lo() > 0);
// x all positive
return Exp(Mul(y, Log(x)));
}
interval interval_algebra::iPow(const interval& x, const interval& y)
{
if (x.isEmpty() || y.isEmpty()) {
return empty();
}
int y0 = std::max(0, saturatedIntCast(y.lo()));
int y1 = std::max(0, saturatedIntCast(y.hi()));
interval z = ipow(x, y0);
if (y1 > y0) {
// we have more than one integer exponent
z = reunion(z, ipow(x, y0 + 1));
z = reunion(z, ipow(x, y1 - 1));
z = reunion(z, ipow(x, y1));
}
return z;
}
interval interval_algebra::Pow(const interval& x, const interval& y)
{
interval z = empty();
interval xp = intersection(x, interval{nexttoward(0.0, 1.0), HUGE_VAL, 0});
interval xn = intersection(x, interval{-HUGE_VAL, nexttoward(0.0, -1.0), 0});
if (y.hasZero()) {
// x^0 = 1
z = reunion(z, interval(1, 1, 0));
}
if (x.hasZero()) {
// 0^y = 0
z = reunion(z, interval(0, 0, 0));
}
if (!xp.isEmpty()) {
z = reunion(z, fPow(xp, y));
}
if (!xn.isEmpty()) {
z = reunion(z, iPow(xn, y));
}
return z;
}
static double myfPow(double x, double y)
{
return std::pow(x, y);
}
static double myiPow(double x, double y)
{
return std::pow(x, int(y));
}
void interval_algebra::testPow()
{
/* analyzeBinaryMethod(10, 2000000, "iPow^2", interval(-100, 100), interval(2), myiPow,
&interval_algebra::iPow); analyzeBinaryMethod(10, 2000000, "iPow^3", interval(-100, 100),
interval(3), myiPow, &interval_algebra::iPow); analyzeBinaryMethod(10, 2000000, "iPow^2",
interval(-1, 1), interval(2), myiPow, &interval_algebra::iPow); analyzeBinaryMethod(10, 2000000,
"iPow^3", interval(-1, 1), interval(3), myiPow, &interval_algebra::iPow);*/
analyzeBinaryMethod(5, 2000000, "iPow2", interval(-100, 100, 0), interval(0, 200, 0), myiPow,
&interval_algebra::iPow);
analyzeBinaryMethod(5, 2000000, "iPow2", interval(-100, 100, -5), interval(0, 200, 0), myiPow,
&interval_algebra::iPow);
analyzeBinaryMethod(5, 2000000, "iPow2", interval(-100, 100, 0), interval(0, 200, -5), myiPow,
&interval_algebra::iPow);
analyzeBinaryMethod(5, 2000000, "iPow2", interval(-1, 1, 0), interval(1, 3, 0), myiPow,
&interval_algebra::iPow);
analyzeBinaryMethod(5, 2000000, "iPow2", interval(-1, 1, -5), interval(1, 3, 0), myiPow,
&interval_algebra::iPow);
analyzeBinaryMethod(5, 2000000, "iPow2", interval(-1, 1, 0), interval(1, 3, -5), myiPow,
&interval_algebra::iPow);
analyzeBinaryMethod(5, 2000000, "iPow2", interval(-1, 1), interval(1, 10), myiPow,
&interval_algebra::iPow);
analyzeBinaryMethod(5, 2000000, "iPow2", interval(-1, 1), interval(1, 10), myiPow,
&interval_algebra::iPow);
analyzeBinaryMethod(5, 2000000, "iPow2", interval(-1, 1), interval(1, 10), myiPow,
&interval_algebra::iPow);
/* analyzeBinaryMethod(10, 2000000, "fPow2", interval(1, 1000), interval(-10, 10), myfPow,
&interval_algebra::fPow); analyzeBinaryMethod(10, 2000000, "fPow2", interval(0.001, 1),
interval(-10, 10), myfPow, &interval_algebra::fPow); analyzeBinaryMethod(10, 2000000, "fPow2",
interval(0.001, 10), interval(-200, 200), myfPow, &interval_algebra::fPow);*/
}
} // namespace itv
|