1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
/* Copyright 2023 Yann ORLAREY
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <cmath>
#include <functional>
#include <random>
#include "check.hh"
#include "interval_algebra.hh"
#include "interval_def.hh"
namespace itv {
//------------------------------------------------------------------------------------------
// Interval Sin
// interval Sin(const interval& x);
// void testSin();
static double sinPi(double x)
{
return sin(x * M_PI);
}
interval interval_algebra::Sin(const interval& x)
{
if (x.isEmpty()) {
return empty();
}
int precision = exactPrecisionUnary(sin, 0.5, pow(2, x.lsb()));
if ((precision == INT_MIN) || taylor_lsb) {
precision =
2 * x.lsb() - 1; // if x.lsb() is so small that the automatic computation doesn't work
}
if (x.size() >= 2 * M_PI) {
return {-1, 1, precision};
}
// normalize input interval between 0..2
double l = fmod(x.lo(), 2 * M_PI);
if (l < 0) {
l += 2 * M_PI;
}
interval i(l, l + x.size(), x.lsb());
// compute the default boundaries
double a = sin(i.lo());
double b = sin(i.hi());
double lo = std::min(a, b);
double hi = std::max(a, b);
// check if integers are included
if (i.has(M_PI_2) || i.has(5 * M_PI_2)) {
hi = 1;
}
if (i.has(3 * M_PI_2) || i.has(7 * M_PI_2)) {
lo = -1;
}
double v = M_PI_2; // value of the interval at which the finest precision is computed
// defaults at 0.5, interchangeable with any other half-integer
// precision if we don't hit the half integers
if (i.hi() < M_PI_2) {
v = x.hi();
} else if (((i.lo() > M_PI_2) && (i.hi() < 3 * M_PI_2)) ||
((i.lo() > 3 * M_PI_2) && (i.hi() < 2.5 * M_PI))) {
double delta_hi = ceil(i.hi() / M_PI + 0.5) - i.hi() / M_PI;
double delta_lo = i.lo() / M_PI - floor(i.lo() / M_PI - 0.5);
if (delta_lo > delta_hi) { // if i.hi is closer to its higher half-integer than i.lo() to
// its lower half-integer
v = x.hi();
} else {
v = x.lo();
}
}
precision = exactPrecisionUnary(sin, v, pow(2, x.lsb()));
if ((precision == INT_MIN) || taylor_lsb) {
if (v != 0.5 * M_PI) {
precision =
x.lsb() +
(int)floor(log2(abs(cos(v)))); // (int)floor(log2(M_PI*cos(M_PI*v))) + x.lsb();
} else {
precision = 2 * x.lsb() - 1; // - (int)floor(2*log2(M_PI));
}
}
return {lo, hi, precision};
}
void interval_algebra::testSin()
{
// analyzeUnaryMethod(5, 20000, "sin", interval(-1, 1, -3), sin, &interval_algebra::Sin);
analyzeUnaryMethod(10, 40000, "sin", interval(0, 2 * M_PI, -3), sin, &interval_algebra::Sin);
analyzeUnaryMethod(10, 40000, "sin", interval(0, 2 * M_PI, -5), sin, &interval_algebra::Sin);
analyzeUnaryMethod(10, 40000, "sin", interval(0, 2 * M_PI, -10), sin, &interval_algebra::Sin);
analyzeUnaryMethod(10, 40000, "sin", interval(0, 2 * M_PI, -15), sin, &interval_algebra::Sin);
analyzeUnaryMethod(10, 40000, "sin", interval(0, 2 * M_PI, -20), sin, &interval_algebra::Sin);
analyzeUnaryMethod(10, 40000, "sin", interval(0, 2 * M_PI, -24), sin, &interval_algebra::Sin);
}
} // namespace itv
|