1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/************************************************************************
************************************************************************
FAUST compiler
Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
************************************************************************/
#pragma once
#include <limits.h>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <string>
// #include "global"
// ***************************************************************************
//
// An Interval is a (possibly empty) set of numbers approximated by two
// boundaries. Empty intervals have NAN as boundaries.
//
//****************************************************************************
namespace itv {
/**
* Cast a double to an int, with saturation.
*/
inline int saturatedIntCast(double d)
{
return int(std::min(2147483647.0, std::max(d, -2147483648.0)));
}
class interval {
private:
double fLo{std::numeric_limits<double>::lowest()}; ///< minimal value
double fHi{std::numeric_limits<double>::max()}; ///< maximal value
int fLSB{-24}; ///< lsb in bits
public:
//-------------------------------------------------------------------------
// constructors
//-------------------------------------------------------------------------
interval() = default;
interval(double n, double m, int lsb = -24) noexcept
{
if (lsb == INT_MIN) {
fLSB = -24;
} else {
fLSB = lsb;
}
if (std::isnan(n) || std::isnan(m)) {
fLo = NAN;
fHi = NAN;
} else {
fLo = std::min(n, m);
fHi = std::max(n, m);
}
}
explicit interval(double n) noexcept : interval(n, n) {}
// interval(const interval& r) : fEmpty(r.empty()), fLo(r.lo()), fHi(r.hi())
// {}
//-------------------------------------------------------------------------
// basic properties
//-------------------------------------------------------------------------
bool isEmpty() const { return std::isnan(fLo) || std::isnan(fHi); }
bool isValid() const { return !isEmpty(); } // for compatibility reasons
bool isUnbounded() const { return std::isinf(fLo) || std::isinf(fHi); }
bool isBounded() const { return !isUnbounded(); }
bool has(double x) const { return (fLo <= x) && (fHi >= x); }
bool is(double x) const { return (fLo == x) && (fHi == x); }
bool hasZero() const { return has(0.0); }
bool isZero() const { return is(0.0); }
bool isconst() const { return (fLo == fHi) && !std::isnan(fLo); }
bool ispowerof2() const
{
auto n = int(fHi);
return isconst() && ((n & (-n)) == n);
}
bool isbitmask() const
{
int n = int(fHi) + 1;
return isconst() && ((n & (-n)) == n);
}
double lo() const { return fLo; }
double hi() const { return fHi; }
double size() const { return fHi - fLo; }
int lsb() const { return fLSB; }
// position of the most significant bit of the value, without taking the sign bit into account
int msb() const
{
if ((fLo == 0) && (fHi == 0)) {
return 0;
}
// amplitude of the interval
// can be < 1.0, in which case the msb will be negative and indicate the number of implicit
// leading zeroes
double range = std::max(std::abs(fLo), std::abs(fHi));
if (std::isinf(range)) {
// if (fLSB == 0) // if we're dealing with integers: is that a good criterion?
return 31;
// return 20; // max MSB of the VHDL design; TODO: change when integrating in the
// compiler
}
int l = int(std::ceil(std::log2(range)));
// The sign bit will be added later on
return l;
}
std::string to_string() const
{
if (isEmpty()) {
return "[]";
} else {
char buffer[64];
snprintf(buffer, 63, "[%g, %g]", fLo, fHi);
return std::string(buffer);
}
}
};
//-------------------------------------------------------------------------
// printing
//-------------------------------------------------------------------------
inline std::ostream& operator<<(std::ostream& dst, const interval& i)
{
if (i.isEmpty()) {
return dst << "interval()";
} else {
return dst << "interval(" << i.lo() << ',' << i.hi() << ',' << i.lsb() << ")";
}
}
//-------------------------------------------------------------------------
// set operations
//-------------------------------------------------------------------------
inline interval empty() noexcept
{
return {NAN, NAN, 0};
}
inline interval intersection(const interval& i, const interval& j)
{
if (i.isEmpty()) {
return i;
} else if (j.isEmpty()) {
return j;
} else {
double l = std::max(i.lo(), j.lo());
double h = std::min(i.hi(), j.hi());
int p = std::min(i.lsb(),
j.lsb()); // precision of the intersection should be the finest of the two
if (l > h) {
return empty();
} else {
return {l, h, p};
}
}
}
inline interval reunion(const interval& i, const interval& j)
{
if (i.isEmpty()) {
return j;
} else if (j.isEmpty()) {
return i;
} else {
double l = std::min(i.lo(), j.lo());
double h = std::max(i.hi(), j.hi());
int p =
std::min(i.lsb(), j.lsb()); // precision of the reunion should be the finest of the two
return {l, h, p};
}
}
inline interval singleton(double x)
{
if (x == 0) {
return {0, 0, 0};
}
/* int precision = lsb;
while (floor(x * pow(2, -precision - 1)) == x * pow(2, -precision - 1) && x != 0) {
precision++;
}
*/
int m = std::floor(std::log2(std::abs(x)));
int precision = m - 32; // 32 = set width
return {x, x, precision};
}
//-------------------------------------------------------------------------
// predicates
//-------------------------------------------------------------------------
// basic predicates
inline bool operator==(const interval& i, const interval& j)
{
return (i.isEmpty() && j.isEmpty()) || ((i.lo() == j.lo()) && (i.hi() == j.hi()));
}
inline bool operator<=(const interval& i, const interval& j)
{
return (i.lo() >= j.lo()) && (i.hi() <= j.hi());
}
// additional predicates
inline bool operator!=(const interval& i, const interval& j)
{
return !(i == j);
}
inline bool operator<(const interval& i, const interval& j)
{
return (i <= j) && (i != j);
}
inline bool operator>=(const interval& i, const interval& j)
{
return j <= i;
}
inline bool operator>(const interval& i, const interval& j)
{
return j < i;
}
} // namespace itv
|