File: propagate.cpp

package info (click to toggle)
faust 2.79.3%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 397,496 kB
  • sloc: cpp: 278,433; ansic: 116,164; javascript: 18,529; vhdl: 14,052; sh: 13,884; java: 5,900; objc: 3,852; python: 3,222; makefile: 2,655; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 110; tcl: 26
file content (617 lines) | stat: -rw-r--r-- 18,577 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
/************************************************************************
 ************************************************************************
    FAUST compiler
    Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/

#include "propagate.hh"
#include "Text.hh"
#include "aterm.hh"
#include "exception.hh"
#include "floats.hh"
#include "global.hh"
#include "labels.hh"
#include "names.hh"
#include "ppbox.hh"
#include "ppsig.hh"
#include "prim2.hh"
#include "simplify.hh"
#include "xtended.hh"

////////////////////////////////////////////////////////////////////////
/**
 * propagate : box listOfSignal-> listOfSignal'
 *
 * Propagate a list of signals into a box expression representing a
 * signal processor
 */
///////////////////////////////////////////////////////////////////////

using namespace std;

// Private Implementation
//------------------------

//! mix a list of signals on n bus
static siglist mix(const siglist& lsig, int nbus)
{
    int nlines = (int)lsig.size();

    siglist dst(nbus);

    for (int b = 0; b < nbus; b++) {
        Tree t = (b < nlines) ? lsig[b] : sigInt(0);
        for (int i = b + nbus; i < nlines; i += nbus) {
            t = sigAdd(t, lsig[i]);
        }
        dst[b] = t;
    }
    return dst;
}

//! split a list of signals on n bus
static siglist split(const siglist& inputs, int nbus)
{
    int nlines = (int)inputs.size();

    siglist outputs(nbus);

    for (int b = 0; b < nbus; b++) {
        outputs[b] = inputs[b % nlines];
    }
    return outputs;
}

//! build a list of n projections of a recursive group
static siglist makeSigProjList(Tree t, int n)
{
    siglist l(n);
    for (int i = 0; i < n; i++) {
        l[i] = sigDelay0(sigProj(i, t));
    }
    return l;
}

//! build a list of n mem projections of a recursive group
static siglist makeMemSigProjList(Tree t, int n)
{
    siglist l(n);
    for (int i = 0; i < n; i++) {
        l[i] = sigDelay1(sigProj(i, t));
    }
    return l;
}

static inline siglist makeList(Tree t)
{
    siglist l(1);
    l[0] = t;
    return l;
}

static siglist listRange(const siglist& l, int i, int j)
{
    siglist r(j - i);
    for (int x = i; x < j; x++) {
        r[x - i] = l[x];
    }
    return r;
}

static siglist listConcat(const siglist& a, const siglist& b)
{
    int     n1 = (int)a.size();
    int     n2 = (int)b.size();
    siglist r(n1 + n2);

    for (int x = 0; x < n1; x++) {
        r[x] = a[x];
    }
    for (int x = 0; x < n2; x++) {
        r[x + n1] = b[x];
    }
    return r;
}

/**
 * Convert a tree list of signals into an stl vector of signals
 */
static void treelist2siglist(Tree l, siglist& r)
{
    r.clear();
    while (!isNil(l)) {
        r.push_back(hd(l));
        l = tl(l);
    }
}

static siglist listLift(const siglist& l)
{
    int     n = (int)l.size();
    siglist r(n);

    for (int i = 0; i < n; i++) {
        r[i] = lift(l[i]);
    }
    return r;
}

/**
 * Store the propagation result as a property of the arguments tuplet.
 *
 * @param args propagation arguments
 * @param value propagation result
 */
static void setPropagateProperty(Tree args, const siglist& lsig)
{
    setProperty(args, tree(gGlobal->PROPAGATEPROPERTY), listConvert(lsig));
}

/**
 * Retreive the propagation result as a property of the arguments tuplet.
 *
 * @param args propagation arguments
 * @param lsig the propagation result if any
 * @return true if a propagation result was stored
 */
static bool getPropagateProperty(Tree args, siglist& lsig)
{
    Tree value;
    if (getProperty(args, tree(gGlobal->PROPAGATEPROPERTY), value)) {
        treelist2siglist(value, lsig);
        return true;
    } else {
        return false;
    }
}

/**
 * Propagate a list of signals into a block diagram.
 *
 * @param slotenv environment associating slots and signals
 * @param path user interface group path
 * @param box the block diagram
 * @param lsig the list of input signals to propagate
 * @return the resulting list of output signals
 */
static siglist realPropagate(Tree slotenv, Tree path, Tree box, const siglist& lsig);

// Collect the leaf numbers of tree l into vector v.
// return true if l is a number or a parallel tree of numbers.
static bool isIntTree(Tree l, vector<int>& v)
{
    int    n;
    double r;
    Tree   x, y;

    if (isBoxInt(l, &n)) {
        v.push_back(n);
        return true;

    } else if (isBoxReal(l, &r)) {
        v.push_back(int(r));
        return true;

    } else if (isBoxPar(l, x, y)) {
        return isIntTree(x, v) && isIntTree(y, v);

    } else {
        stringstream error;
        error << "ERROR : file " << __FILE__ << ':' << __LINE__
              << ", not a valid list of numbers : " << boxpp(l) << endl;
        throw faustexception(error.str());
    }
}

/**
 * Propagate a list of signals into a block diagram. Actual function.
 *
 * @param slotenv environment associating slots and signals
 * @param path user interface group path
 * @param box the block diagram
 * @param lsig the list of input signals to propagate
 * @return the resulting list of output signals
 */
static siglist realPropagate(Tree slotenv, Tree path, Tree box, const siglist& lsig)
{
    int    i;
    double r;
    prim0  p0;
    prim1  p1;
    prim2  p2;
    prim3  p3;
    prim4  p4;
    prim5  p5;

    Tree t1, t2, t3, ff, label, cur, min, max, step, type, name, file, slot, body, chan;
    tvec wf;

    xtended* xt = (xtended*)getUserData(box);

    // Extended Primitives

    if (xt) {
        faustassert(lsig.size() == xt->arity());
        return makeList(xt->computeSigOutput(lsig));
    }

    // Numbers and Constants

    else if (isBoxInt(box, &i)) {
        faustassert(lsig.size() == 0);
        return makeList(sigInt(i));
    } else if (isBoxReal(box, &r)) {
        faustassert(lsig.size() == 0);
        return makeList(sigReal(r));
    }

    // A Waveform has two outputs it size and a period signal representing its content

    else if (isBoxWaveform(box)) {
        faustassert(lsig.size() == 0);
        const tvec br = box->branches();
        return listConcat(makeList(sigInt(int(br.size()))), makeList(sigWaveform(br)));
    }

    else if (isBoxFConst(box, type, name, file)) {
        faustassert(lsig.size() == 0);
        return makeList(sigFConst(type, name, file));
    }

    else if (isBoxFVar(box, type, name, file)) {
        faustassert(lsig.size() == 0);
        return makeList(sigFVar(type, name, file));
    }

    // Wire and Cut

    else if (isBoxCut(box)) {
        faustassert(lsig.size() == 1);
        return siglist();
    }

    else if (isBoxWire(box)) {
        faustassert(lsig.size() == 1);
        return lsig;
    }

    // Slots and Symbolic Boxes

    else if (isBoxSlot(box)) {
        Tree sig;
        faustassert(lsig.size() == 0);
        if (!searchEnv(box, sig, slotenv)) {
            sig = sigInput(++gGlobal->gDummyInput);
        }
        return makeList(sig);
    }

    else if (isBoxSymbolic(box, slot, body)) {
        faustassert(lsig.size() > 0);
        return propagate(pushEnv(slot, lsig[0], slotenv), path, body,
                         listRange(lsig, 1, (int)lsig.size()));
    }

    // Primitives

    else if (isBoxPrim0(box, &p0)) {
        faustassert(lsig.size() == 0);
        return makeList(p0());
    }

    else if (isBoxPrim1(box, &p1)) {
        faustassert(lsig.size() == 1);
        num n;
        if (isNum(lsig[0], n)) {
            return makeList(simplify(p1(lsig[0])));
        } else {
            return makeList(p1(lsig[0]));
        }
    }

    else if (isBoxPrim2(box, &p2)) {
        // cerr << "prim2 receive : " << ppsig(lsig) << endl;
        faustassert(lsig.size() == 2);
        if (p2 == &sigEnable) {
            if (gGlobal->gEnableFlag) {
                // special case for sigEnable that requires a transformation
                // enable(X,Y) -> sigControl(X*Y, Y!=0)
                return makeList(sigControl(sigMul(lsig[0], lsig[1]), sigNE(lsig[1], sigReal(0.0))));
            } else {
                // If gEnableFlag is false we replace enable by a simple multiplication
                return makeList(sigMul(lsig[0], lsig[1]));
            }
        } else if (p2 == &sigControl) {
            if (gGlobal->gEnableFlag) {
                // special case for sigControl that requires a transformation
                // control(X,Y) -> sigControl(X, Y!=0)
                return makeList(sigControl(lsig[0], sigNE(lsig[1], sigReal(0.0))));
            } else {
                // If gEnableFlag is false we replace control by identity function
                return makeList(lsig[0]);
            }
        } else {
            num n, m;
            if (isNum(lsig[0], n) && isNum(lsig[1], m)) {
                return makeList(simplify(p2(lsig[0], lsig[1])));
            } else {
                return makeList(p2(lsig[0], lsig[1]));
            }
        }
    }

    else if (isBoxPrim3(box, &p3)) {
        faustassert(lsig.size() == 3);
        return makeList(p3(lsig[0], lsig[1], lsig[2]));
    }

    else if (isBoxPrim4(box, &p4)) {
        faustassert(lsig.size() == 4);
        return makeList(p4(lsig[0], lsig[1], lsig[2], lsig[3]));
    }

    else if (isBoxPrim5(box, &p5)) {
        return makeList(p5(lsig[0], lsig[1], lsig[2], lsig[3], lsig[4]));
    }

    else if (isBoxFFun(box, ff)) {
        faustassert(int(lsig.size()) == ffarity(ff));
        return makeList(sigFFun(ff, listConvert(lsig)));
    }

    // User Interface Widgets

    else if (isBoxButton(box, label)) {
        faustassert(lsig.size() == 0);
        return makeList(sigButton(normalizePath(cons(label, path))));
    }

    else if (isBoxCheckbox(box, label)) {
        faustassert(lsig.size() == 0);
        return makeList(sigCheckbox(normalizePath(cons(label, path))));
    }

    else if (isBoxVSlider(box, label, cur, min, max, step)) {
        faustassert(lsig.size() == 0);
        return makeList(sigVSlider(normalizePath(cons(label, path)), cur, min, max, step));
    }

    else if (isBoxHSlider(box, label, cur, min, max, step)) {
        faustassert(lsig.size() == 0);
        return makeList(sigHSlider(normalizePath(cons(label, path)), cur, min, max, step));
    }

    else if (isBoxNumEntry(box, label, cur, min, max, step)) {
        faustassert(lsig.size() == 0);
        return makeList(sigNumEntry(normalizePath(cons(label, path)), cur, min, max, step));
    }

    else if (isBoxVBargraph(box, label, min, max)) {
        faustassert(lsig.size() == 1);
        return makeList(sigVBargraph(normalizePath(cons(label, path)), min, max, lsig[0]));
    }

    else if (isBoxHBargraph(box, label, min, max)) {
        faustassert(lsig.size() == 1);
        return makeList(sigHBargraph(normalizePath(cons(label, path)), min, max, lsig[0]));
    }

    else if (isBoxSoundfile(box, label, chan)) {
        faustassert(lsig.size() == 2);
        Tree    soundfile = sigSoundfile(normalizePath(cons(label, path)));
        Tree    part      = lsig[0];
        int     c         = tree2int(chan);
        siglist lsig2(c + 2);
        lsig2[0] = sigSoundfileLength(soundfile, part);
        lsig2[1] = sigSoundfileRate(soundfile, part);

        // compute bound limited read index : int(max(0, min(ridx,length-1)))
        Tree ridx = sigMax(sigInt(0), sigMin(lsig[1], sigSub(lsig2[0], sigInt(1))));
        for (int i1 = 0; i1 < c; i1++) {
            lsig2[i1 + 2] = sigSoundfileBuffer(soundfile, sigInt(i1), part, ridx);
        }
        return lsig2;
    }

    // User Interface Groups

    else if (isBoxVGroup(box, label, t1)) {
        return propagate(slotenv, cons(cons(tree(0), label), path), t1, lsig);
    }

    else if (isBoxHGroup(box, label, t1)) {
        return propagate(slotenv, cons(cons(tree(1), label), path), t1, lsig);
    }

    else if (isBoxTGroup(box, label, t1)) {
        return propagate(slotenv, cons(cons(tree(2), label), path), t1, lsig);
    }

    // Block Diagram Composition Algebra

    else if (isBoxSeq(box, t1, t2)) {
        int in1, out1, in2, out2;
        getBoxType(t1, &in1, &out1);
        getBoxType(t2, &in2, &out2);

        // Connection coherency is checked in evaluateBlockDiagram
        faustassert(out1 == in2);
        return propagate(slotenv, path, t2, propagate(slotenv, path, t1, lsig));
    }

    else if (isBoxPar(box, t1, t2)) {
        int in1, out1, in2, out2;
        getBoxType(t1, &in1, &out1);
        getBoxType(t2, &in2, &out2);

        // No restriction in connection
        return listConcat(propagate(slotenv, path, t1, listRange(lsig, 0, in1)),
                          propagate(slotenv, path, t2, listRange(lsig, in1, in1 + in2)));
    }

    else if (isBoxSplit(box, t1, t2)) {
        int in1, out1, in2, out2;
        getBoxType(t1, &in1, &out1);
        getBoxType(t2, &in2, &out2);

        // Connection coherency is checked in evaluateBlockDiagram
        siglist l1 = propagate(slotenv, path, t1, lsig);
        siglist l2 = split(l1, in2);
        return propagate(slotenv, path, t2, l2);
    }

    else if (isBoxMerge(box, t1, t2)) {
        int in1, out1, in2, out2;
        getBoxType(t1, &in1, &out1);
        getBoxType(t2, &in2, &out2);

        // Connection coherency is checked in evaluateBlockDiagram
        siglist l1 = propagate(slotenv, path, t1, lsig);
        siglist l2 = mix(l1, in2);
        return propagate(slotenv, path, t2, l2);
    }

    else if (isBoxRec(box, t1, t2)) {
        int in1, out1, in2, out2;
        getBoxType(t1, &in1, &out1);
        getBoxType(t2, &in2, &out2);

        // The environment must also be lifted
        Tree slotenv2 = lift(slotenv);

        // Connection coherency is checked in evaluateBlockDiagram
        siglist l0 = makeMemSigProjList(ref(1), in2);
        siglist l1 = propagate(slotenv2, path, t2, l0);
        siglist l2 = propagate(slotenv2, path, t1, listConcat(l1, listLift(lsig)));
        Tree    g  = rec(listConvert(l2));

        // Compute output list of recursive signals
        siglist ol(out1);  // output list
        int     p = 0;     // projection number

        for (const auto& exp : l2) {
            if (exp->aperture() > 0) {
                // it is a regular recursive expression branch
                ol[p] = sigDelay0(sigProj(p, g));
            } else {
                // this expression is a closed term,
                // it doesn't need to be inside this recursion group.
                // cerr << "degenerate recursion " << exp << endl;
                ol[p] = exp;
            }
            p++;
        }

        return ol;
    }

    else if (isBoxEnvironment(box)) {
        faustassert(lsig.size() == 0);
        return siglist();

    } else if (isBoxRoute(box, t1, t2, t3)) {
        int         ins, outs;
        vector<int> route;
        siglist     outsigs;
        // ins, outs, route are casted to int in realeval
        if (isBoxInt(t1, &ins) && isBoxInt(t2, &outs) && isIntTree(t3, route)) {
            // initialize output signals
            for (int i1 = 0; i1 < outs; i1++) {
                outsigs.push_back(sigInt(0));
            }

            // route propagation
            size_t m = route.size() - 1;
            for (size_t i1 = 0; i1 < m; i1 += 2) {
                int src = route[i1];
                int dst = route[i1 + 1];
                if ((dst > 0) & (dst <= outs)) {
                    // we have a destination
                    Tree exp = outsigs[dst - 1];
                    if ((src > 0) & (src <= ins)) {
                        // we have a source
                        outsigs[dst - 1] = simplifyingAdd(exp, lsig[src - 1]);
                    }
                }
            }
            return outsigs;

        } else {
            stringstream error;
            error << "ERROR : file " << __FILE__ << ':' << __LINE__
                  << ", invalid route expression : " << boxpp(box) << endl;
            throw faustexception(error.str());
        }
    }
    cerr << "ASSERT : file " << __FILE__ << ':' << __LINE__
         << ", unrecognised box expression : " << boxpp(box) << endl;
    faustassert(false);

    return siglist();
}

//------------------
// Public Interface
//------------------

/**
 * Propagate a list of signals into a block diagram. Do memoization.
 *
 * @param slotenv environment associating slots and signals
 * @param path user interface group path
 * @param box the block diagram
 * @param lsig the list of input signals to propagate
 * @return the resulting list of output signals
 */

siglist propagate(Tree slotenv, Tree path, Tree box, const siglist& lsig)
{
    Tree    args = tree(gGlobal->PROPAGATEPROPERTY, slotenv, path, box, listConvert(lsig));
    siglist result;
    if (!getPropagateProperty(args, result)) {
        result = realPropagate(slotenv, path, box, lsig);
        setPropagateProperty(args, result);
    }
    // cerr << "propagate in " << boxpp(box) << endl;
    // for (int i = 0; i < lsig.size(); i++) { cerr << " -> signal " << i << " : " << *(lsig[i]) <<
    // endl; } cerr << endl;
    return result;
}

//! build a list of n inputs
siglist makeSigInputList(int n)
{
    siglist l(n);
    for (int i = 0; i < n; i++) {
        l[i] = sigInput(i);
    }
    return l;
}
/**
 * Top level propagate a list of signals into a block diagram. Do memoization.
 *
 * @param path user interface group path
 * @param box the block diagram
 * @param lsig the list of input signals to propagate
 * @return the resulting list of output signals
 */

Tree boxPropagateSig(Tree path, Tree box, const siglist& lsig)
{
    return listConvert(propagate(gGlobal->nil, path, box, lsig));
}